
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7153442/publications.pdf Version: 2024-02-01

ALBERT & CROEN

#	Article	IF	CITATIONS
1	Fecal microbiota transplantation does not alter bacterial translocation and visceral adipose tissue inflammation in individuals with obesity. Obesity Science and Practice, 2022, 8, 56-65.	1.0	4
2	Mice with a deficiency in Peroxisomal Membrane Protein 4 (PXMP4) display mild changes in hepatic lipid metabolism. Scientific Reports, 2022, 12, 2512.	1.6	7
3	Hyperinsulinemia Is Highly Associated With Markers of Hepatocytic Senescence in Two Independent Cohorts. Diabetes, 2022, 71, 1929-1936.	0.3	11
4	Protein Phosphatase 1 Regulatory Subunit 3B Genotype at rs4240624 Has a Major Effect on Gallbladder Bile Composition. Hepatology Communications, 2021, 5, 244-257.	2.0	4
5	Parenteral nutrition impairs plasma bile acid and gut hormone responses to mixed meal testing in lean healthy men. Clinical Nutrition, 2021, 40, 1013-1021.	2.3	9
6	Altered bile acid kinetics contribute to postprandial hypoglycaemia after Roux-en-Y gastric bypass surgery. International Journal of Obesity, 2021, 45, 619-630.	1.6	16
7	A hierarchical dynamic model used for investigating feed efficiency and its relationship with hepatic gene expression in APOE*3â€Leiden.CETP mice. Physiological Reports, 2021, 9, e14832.	0.7	2
8	The TICE Pathway: Mechanisms and Lipid-Lowering Therapies. Methodist DeBakey Cardiovascular Journal, 2021, 15, 70.	0.5	25
9	Gallstone Formation Follows a Different Trajectory in Bariatric Patients Compared to Nonbariatric Patients. Metabolites, 2021, 11, 682.	1.3	1
10	Effects of fecal microbiota transplant on DNA methylation in subjects with metabolic syndrome. Gut Microbes, 2021, 13, 1993513.	4.3	25
11	Blocking Sodiumâ€Taurocholate Cotransporting Polypeptide Stimulates Biliary Cholesterol and Phospholipid Secretion in Mice. Hepatology, 2020, 71, 247-258.	3.6	12
12	Colesevelam enhances the beneficial effects of brown fat activation on hyperlipidaemia and atherosclerosis development. Cardiovascular Research, 2020, 116, 1710-1720.	1.8	22
13	Genetic and Microbial Associations to Plasma and Fecal Bile Acids in Obesity Relate to Plasma Lipids and Liver Fat Content. Cell Reports, 2020, 33, 108212.	2.9	55
14	Improved cardiovascular risk prediction using targeted plasma proteomics in primary prevention. European Heart Journal, 2020, 41, 3998-4007.	1.0	68
15	Metabolic effects of PCSK9 inhibition with Evolocumab in subjects with elevated Lp(a). Lipids in Health and Disease, 2020, 19, 91.	1.2	4
16	Reply. Hepatology, 2020, 72, 1885-1886.	3.6	0
17	Atherogenic Lipoprotein(a) Increases Vascular Glycolysis, Thereby Facilitating Inflammation and Leukocyte Extravasation. Circulation Research, 2020, 126, 1346-1359.	2.0	96
18	Modelâ€based data analysis of individual human postprandial plasma bile acid responses indicates a major role for the gallbladder and intestine. Physiological Reports, 2020, 8, e14358.	0.7	6

#	Article	IF	CITATIONS
19	Oral vancomycin treatment does not alter markers of postprandial inflammation in lean and obese subjects. Physiological Reports, 2019, 7, e14199.	0.7	10
20	Efficient reabsorption of transintestinally excreted cholesterol is a strong determinant for cholesterol disposal in mice. Journal of Lipid Research, 2019, 60, 1562-1572.	2.0	19
21	FXR overexpression alters adipose tissue architecture in mice and limits its storage capacity leading to metabolic derangements. Journal of Lipid Research, 2019, 60, 1547-1561.	2.0	19
22	Association of hemoglobin A1C with circulating metabolites in Dutch with European, African Surinamese and Ghanaian background. Nutrition and Diabetes, 2019, 9, 15.	1.5	1
23	Farnesoid X receptor and bile acids regulate vitamin A storage. Scientific Reports, 2019, 9, 19493.	1.6	10
24	Predictive value of targeted proteomics for coronary plaque morphology in patients with suspected coronary artery disease. EBioMedicine, 2019, 39, 109-117.	2.7	42
25	AAV8-mediated gene transfer of microRNA-132 improves beta cell function in mice fed a high-fat diet. Journal of Endocrinology, 2019, 240, 123-132.	1.2	12
26	Cholestasis-associated glucocorticoid overexposure does not increase atherogenesis. Journal of Endocrinology, 2019, 242, 1-12.	1.2	7
27	Running wheel access fails to resolve impaired sustainable health in mice feeding a high fat sucrose diet. Aging, 2019, 11, 1564-1579.	1.4	2
28	Gut microbiota, metabolism and psychopathology: A critical review and novel perspectives. Critical Reviews in Clinical Laboratory Sciences, 2018, 55, 283-293.	2.7	31
29	Cholesterol Transport Revisited: A New Turbo Mechanism to Drive Cholesterol Excretion. Trends in Endocrinology and Metabolism, 2018, 29, 123-133.	3.1	46
30	Lipopolysaccharide Lowers Cholesteryl Ester Transfer Protein by Activating F4/80 ⁺ Clec4f ⁺ Vsig4 ⁺ Ly6C ^{â^'} Kupffer Cell Subsets. Journal of the American Heart Association, 2018, 7, .	1.6	27
31	Effect of Vegan Fecal Microbiota Transplantation on Carnitine―and Cholineâ€Derived Trimethylamineâ€Nâ€Oxide Production and Vascular Inflammation in Patients With Metabolic Syndrome. Journal of the American Heart Association, 2018, 7, .	1.6	164
32	Transhepatic bile acid kinetics in pigs and humans. Clinical Nutrition, 2018, 37, 1406-1414.	2.3	23
33	Chronic infusion of taurolithocholate into the brain increases fat oxidation in mice. Journal of Endocrinology, 2018, 236, 85-97.	1.2	16
34	Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut, 2018, 67, 1269-1279.	6.1	401
35	Transintestinal cholesterol excretion in humans. Current Opinion in Lipidology, 2018, 29, 10-17.	1.2	35
36	Runningâ€wheel activity delays mitochondrial respiratory flux decline in aging mouse muscle via a postâ€ŧranscriptional mechanism. Aging Cell, 2018, 17, e12700.	3.0	31

#	Article	IF	CITATIONS
37	Fecal SCFAs and SCFAâ€producing bacteria in gut microbiome of human NAFLD as a putative link to systemic Tâ€cell activation and advanced disease. United European Gastroenterology Journal, 2018, 6, 1496-1507.	1.6	190
38	Domain intelligible models. Methods, 2018, 149, 69-73.	1.9	4
39	Therapeutic modulation of the bile acid pool by <i>Cyp8b1</i> knockdown protects against nonalcoholic fatty liver disease in mice. FASEB Journal, 2018, 32, 3792-3802.	0.2	37
40	Identification of Discriminating Metabolic Pathways and Metabolites in Human PBMCs Stimulated by Various Pathogenic Agents. Frontiers in Physiology, 2018, 9, 139.	1.3	3
41	In Silico Analysis Identifies Intestinal Transit as a Key Determinant of Systemic Bile Acid Metabolism. Frontiers in Physiology, 2018, 9, 631.	1.3	18
42	Actions of metformin and statins on lipid and glucose metabolism and possible benefit of combination therapy. Cardiovascular Diabetology, 2018, 17, 94.	2.7	101
43	Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography. Nature Medicine, 2018, 24, 1526-1531.	15.2	436
44	In vivo and in silico dynamics of the development of Metabolic Syndrome. PLoS Computational Biology, 2018, 14, e1006145.	1.5	12
45	Intestinal Farnesoid X Receptor Controls Transintestinal Cholesterol Excretion in Mice. Gastroenterology, 2017, 152, 1126-1138.e6.	0.6	109
46	Transintestinal and Biliary Cholesterol Secretion Both Contribute to Macrophage Reverse Cholesterol Transport in Rats—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 643-646.	1.1	24
47	Role of the Gut Microbiome in the Pathogenesis of Obesity and Obesity-Related Metabolic Dysfunction. Gastroenterology, 2017, 152, 1671-1678.	0.6	334
48	An evaluation of the therapeutic potential of fecal microbiota transplantation to treat infectious and metabolic diseases. EMBO Molecular Medicine, 2017, 9, 1-3.	3.3	19
49	Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell Metabolism, 2017, 26, 611-619.e6.	7.2	689
50	Complex interaction between circadian rhythm and diet on bile acid homeostasis in male rats. Chronobiology International, 2017, 34, 1339-1353.	0.9	52
51	Male apoE*3-Leiden.CETP mice on high-fat high-cholesterol diet exhibit a biphasic dyslipidemic response, mimicking the changes in plasma lipids observed through life in men. Physiological Reports, 2017, 5, e13376.	0.7	19
52	ANGPTL4 promotes bile acid absorption during taurocholic acid supplementation via a mechanism dependent on the gut microbiota. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 1056-1067.	1.2	19
53	Hepatocytes contribute to residual glucose production in a mouse model for glycogen storage disease type Ia. Hepatology, 2017, 66, 2042-2054.	3.6	18
54	Atorvastatin accelerates clearance of lipoprotein remnants generated by activated brown fat to further reduce hypercholesterolemia and atherosclerosis. Atherosclerosis, 2017, 267, 116-126.	0.4	23

#	Article	IF	CITATIONS
55	An unexpected role for bile acid synthesis in adaptation to low temperature. Nature Medicine, 2017, 23, 800-802.	15.2	4
56	Retrograde cholesterol transport in the human Caco-2/TC7 cell line: a model to study trans-intestinal cholesterol excretion in atherogenic and diabetic dyslipidemia. Acta Diabetologica, 2017, 54, 191-199.	1.2	10
57	Prolonged fibroblast growth factor 19 response in patients with primary sclerosing cholangitis after an oral chenodeoxycholic acid challenge. Hepatology International, 2017, 11, 132-140.	1.9	16
58	Fecal Bile Salts and the Development of Necrotizing Enterocolitis in Preterm Infants. PLoS ONE, 2017, 12, e0168633.	1.1	12
59	Intestinal Ralstonia pickettii augments glucose intolerance in obesity. PLoS ONE, 2017, 12, e0181693.	1.1	53
60	Whole-Body Vibration Partially Reverses Aging-Induced Increases in Visceral Adiposity and Hepatic Lipid Storage in Mice. PLoS ONE, 2016, 11, e0149419.	1.1	15
61	Effects of Gut Microbiota Manipulation by Antibiotics on Host Metabolism in Obese Humans: A Randomized Double-Blind Placebo-Controlled Trial. Cell Metabolism, 2016, 24, 63-74.	7.2	278
62	Malnutrition-associated liver steatosis and ATP depletion is caused by peroxisomal and mitochondrial dysfunction. Journal of Hepatology, 2016, 65, 1198-1208.	1.8	133
63	Unexpected cholesterol gallstones. Hepatology, 2016, 64, 711-713.	3.6	Ο
64	Measurement of Intestinal and Peripheral Cholesterol Fluxes by a Dualâ€Tracer Balance Method. Current Protocols in Mouse Biology, 2016, 6, 408-434.	1.2	9
65	VEGFB/VEGFR1-Induced Expansion of Adipose Vasculature Counteracts Obesity and Related Metabolic Complications. Cell Metabolism, 2016, 23, 712-724.	7.2	180
66	Deficiency of the oxygen sensor prolyl hydroxylase 1 attenuates hypercholesterolaemia, atherosclerosis, and hyperglycaemia. European Heart Journal, 2016, 37, 2993-2997.	1.0	40
67	Novel role of a triglyceride-synthesizing enzyme: DGAT1 at the crossroad between triglyceride and cholesterol metabolism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1132-1141.	1.2	22
68	Biliary effects of liraglutide and sitagliptin, a 12â€week randomized placeboâ€controlled trial in type 2 diabetes patients. Diabetes, Obesity and Metabolism, 2016, 18, 1217-1225.	2.2	39
69	Endogenous glucocorticoids exacerbate cholestasis-associated liver injury and hypercholesterolemia in mice. Toxicology and Applied Pharmacology, 2016, 306, 1-7.	1.3	11
70	Gut Microbiota in Obesity and Undernutrition. Advances in Nutrition, 2016, 7, 1080-1089.	2.9	103
71	CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL. Nature Communications, 2016, 7, 10961.	5.8	165
72	Transintestinal Cholesterol Transport Is Active in Mice and Humans and Controls Ezetimibe-Induced Fecal Neutral Sterol Excretion. Cell Metabolism, 2016, 24, 783-794.	7.2	119

#	Article	IF	CITATIONS
73	Living on the edge: substrate competition explains loss of robustness in mitochondrial fatty-acid oxidation disorders. BMC Biology, 2016, 14, 107.	1.7	27
74	Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice. Journal of Lipid Research, 2016, 57, 1455-1464.	2.0	102
75	Integrated Network Analysis Reveals an Association between Plasma Mannose Levels and Insulin Resistance. Cell Metabolism, 2016, 24, 172-184.	7.2	133
76	Liver X Receptor Regulates Triglyceride Absorption Through Intestinal Down-regulation of Scavenger Receptor Class B, Type 1. Gastroenterology, 2016, 150, 650-658.	0.6	41
77	Transgenic overexpression of Niemann-Pick C2 protein promotes cholesterol gallstone formation in mice. Journal of Hepatology, 2016, 64, 361-369.	1.8	6
78	Effect of minimal enteral feeding on recovery in a methotrexate-induced gastrointestinal mucositis rat model. Supportive Care in Cancer, 2016, 24, 1357-1364.	1.0	12
79	Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity. PLoS ONE, 2016, 11, e0149782.	1.1	15
80	Impaired Bile Acid Homeostasis in Children with Severe Acute Malnutrition. PLoS ONE, 2016, 11, e0155143.	1.1	20
81	Protection against the Metabolic Syndrome by Guar Gum-Derived Short-Chain Fatty Acids Depends on Peroxisome Proliferator-Activated Receptor γ and Glucagon-Like Peptide-1. PLoS ONE, 2015, 10, e0136364.	1.1	97
82	Forward Individualized Medicine from Personal Genomes to Interactomes. Frontiers in Physiology, 2015, 6, 364.	1.3	15
83	Loss of <i>Cyp8b1</i> Improves Glucose Homeostasis by Increasing GLP-1. Diabetes, 2015, 64, 1168-1179.	0.3	89
84	Bioenergetic cues shift FXR splicing towards FXRα2 to modulate hepatic lipolysis and fatty acid metabolism. Molecular Metabolism, 2015, 4, 891-902.	3.0	33
85	Hepatic ABCG5/G8 overexpression substantially increases biliary cholesterol secretion but does not impact inÂvivo macrophage-to-feces RCT. Atherosclerosis, 2015, 243, 402-406.	0.4	16
86	A systems biology approach reveals the physiological origin of hepatic steatosis induced by liver X receptor activation. FASEB Journal, 2015, 29, 1153-1164.	0.2	18
87	Short-Chain Fatty Acids Protect Against High-Fat Diet–Induced Obesity via a PPARγ-Dependent Switch From Lipogenesis to Fat Oxidation. Diabetes, 2015, 64, 2398-2408.	0.3	734
88	Evaluating computational models of cholesterol metabolism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 1360-1376.	1.2	17
89	Gut microbiota inhibit Asbt-dependent intestinal bile acid reabsorption via Gata4. Journal of Hepatology, 2015, 63, 697-704.	1.8	94
90	Role of Intestinal Microbiome in Lipid and Glucose Metabolism in Diabetes Mellitus. Clinical Therapeutics, 2015, 37, 1172-1177.	1.1	46

#	Article	IF	CITATIONS
91	Effect of open-label infusion of an apoA-I-containing particle (CER-001) on RCT and artery wall thickness in patients with FHA. Journal of Lipid Research, 2015, 56, 703-712.	2.0	73
92	Effects of acute exercise on lipid content and dietary lipid uptake in liver and skeletal muscle of lean and diabetic rats. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E874-E883.	1.8	10
93	Effect of cholecystectomy on bile acid synthesis and circulating levels of fibroblast growth factor 19. Annals of Hepatology, 2015, 14, 710-21.	0.6	24
94	Glucose Kinetics in the Collagen-Induced Arthritis Model: An All-in-One Model to Assess Both Efficacy and Metabolic Side Effects of Glucocorticoids. PLoS ONE, 2014, 9, e98684.	1.1	4
95	A Computational Model for the Analysis of Lipoprotein Distributions in the Mouse: Translating FPLC Profiles to Lipoprotein Metabolism. PLoS Computational Biology, 2014, 10, e1003579.	1.5	15
96	Serum TG-lowering properties of plant sterols and stanols are associated with decreased hepatic VLDL secretion. Journal of Lipid Research, 2014, 55, 2554-2561.	2.0	30
97	Cross-talk between liver and intestine in control of cholesterol and energy homeostasis. Molecular Aspects of Medicine, 2014, 37, 77-88.	2.7	34
98	Beyond intestinal soap—bile acids in metabolic control. Nature Reviews Endocrinology, 2014, 10, 488-498.	4.3	354
99	Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. Journal of Hepatology, 2014, 60, 824-831.	1.8	475
100	FXR: the key to benefits in bariatric surgery?. Nature Medicine, 2014, 20, 337-338.	15.2	33
101	Angptl4 serves as an endogenous inhibitor of intestinal lipid digestion. Molecular Metabolism, 2014, 3, 135-144.	3.0	66
102	Cholesterol-induced hepatic inflammation does not contribute to the development of insulin resistance in male LDL receptor knockout mice. Atherosclerosis, 2014, 232, 390-396.	0.4	20
103	Prednisolone increases enterohepatic cycling of bile acids by induction of Asbt and promotes reverse cholesterol transport. Journal of Hepatology, 2014, 61, 351-357.	1.8	26
104	The Short-Chain Fatty Acid Uptake Fluxes by Mice on a Guar Gum Supplemented Diet Associate with Amelioration of Major Biomarkers of the Metabolic Syndrome. PLoS ONE, 2014, 9, e107392.	1.1	63
105	Hepatic Farnesoid X-Receptor Isoforms α2 and α4 Differentially Modulate Bile Salt and Lipoprotein Metabolism in Mice. PLoS ONE, 2014, 9, e115028.	1.1	30
106	Bile Acid Look-Alike Controls Life Span in C. elegans. Cell Metabolism, 2013, 18, 151-152.	7.2	9
107	Bile Acids and Cholestasis. Gastroenterology, 2013, 144, e17-e18.	0.6	1
108	Scavenger receptor BI and ABCG5/G8 differentially impact biliary sterol secretion and reverse cholesterol transport in mice. Hepatology, 2013, 58, 293-303.	3.6	51

#	Article	IF	CITATIONS
109	Role the TICE?. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1452-1453.	1.1	33
110	PS2 - 9. Obesity changes microRNA expression in islets in mice. Nederlands Tijdschrift Voor Diabetologie, 2012, 10, 105-105.	0.0	0
111	Trans-intestinal cholesterol efflux is not mediated through high density lipoprotein. Journal of Lipid Research, 2012, 53, 2017-2023.	2.0	51
112	Maternal western style diet programs the development of fatty liver in mice. FASEB Journal, 2012, 26, 829.3.	0.2	0
113	Characterization of Whole Body Cholesterol Fluxes in the Mouse. Current Protocols in Mouse Biology, 2011, 1, 413-427.	1.2	5
114	A Reappraisal of the Mechanism by Which Plant Sterols Promote Neutral Sterol Loss in Mice. PLoS ONE, 2011, 6, e21576.	1.1	64
115	Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux. Journal of Lipid Research, 2009, 50, 2046-2054.	2.0	77
116	Activation of the Liver X Receptor Stimulates Trans-intestinal Excretion of Plasma Cholesterol. Journal of Biological Chemistry, 2009, 284, 19211-19219.	1.6	178
117	Direct Intestinal Cholesterol Secretion Contributes Significantly to Total Fecal Neutral Sterol Excretion in Mice. Gastroenterology, 2007, 133, 967-975.	0.6	168
118	Hepatocanalicular Transport Defects: Pathophysiologic Mechanisms of Rare Diseases. Gastroenterology, 2006, 130, 908-925.	0.6	153
119	The emerging role of bile acids as integrators of intermediary metabolism. Journal of Hepatology, 2006, 45, 337-338.	1.8	6
120	The mechanism of ABCG5/ABCG8 in biliary cholesterol secretion in mice. Journal of Lipid Research, 2006, 47, 1959-1966.	2.0	58
121	Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. Journal of Clinical Investigation, 2006, 116, 1052-1062.	3.9	447
122	Differential effects of 24(S)â€hydroxycholesterol in astrocytes and on the expression of apolipoprotein E and apolipoprotein Eâ€mediated cholesterol efflux FASEB Journal, 2006, 20, A92.	0.2	0
123	Lipid Transport into Bile and Role in Bile Formation. Current Drug Targets Immune, Endocrine and Metabolic Disorders, 2005, 5, 131-135.	1.8	10
124	Increased fecal neutral sterol loss upon liver X receptor activation is independent of biliary sterol secretion in mice. Gastroenterology, 2005, 128, 147-156.	0.6	144
125	The ins and outs of reverse cholesterol transport. Annals of Medicine, 2004, 36, 135-145.	1.5	60
126	Relation between hepatic expression of ATP-binding cassette transporters G5 and G8 and biliary cholesterol secretion in mice. Journal of Hepatology, 2003, 38, 710-716.	1.8	78

#	Article	IF	CITATIONS
127	Down-regulation of intestinal scavenger receptor class B, type I (SR-BI) expression in rodents under conditions of deficient bile delivery to the intestine. Biochemical Journal, 2001, 356, 317-325.	1.7	50
128	Increased activity in the biliary con A–binding fraction accounts for the difference in crystallization behavior in bile from Chilean gallstone patients compared with Dutch gallstone patients. Hepatology, 2001, 33, 328-332.	3.6	10
129	Carcinoembryonic antigen-related cell adhesion molecule 1 is the 85-kilodalton pronase-resistant biliary glycoprotein in the cholesterol crystallization promoting low density protein-lipid complex. Hepatology, 2001, 34, 1075-1082.	3.6	9
130	Hepatobiliary cholesterol transport is not impaired in Abca1-null mice lacking HDL. Journal of Clinical Investigation, 2001, 108, 843-850.	3.9	127
131	Hepatic bile versus gallbladder bile: A comparison of protein and lipid concentration and composition in cholesterol gallstone patients. Hepatology, 1998, 28, 11-16.	3.6	36
132	Regulation of mdr2 P-glycoprotein expression by bile salts. Biochemical Journal, 1997, 321, 389-395.	1.7	50
133	The role of mdr2 Pâ€glycoprotein in hepatobiliary lipid transport. FASEB Journal, 1997, 11, 19-28.	0.2	161
134	Mechanism of bile salt-induced mucin secretion by cultured dog gallbladder epithelial cells. Biochemical Journal, 1996, 316, 873-877.	1.7	20
135	Analysis of micellar and vesicular lecithin and cholesterol in model bile using1H- and31P-NMR. Magnetic Resonance Materials in Physics, Biology, and Medicine, 1995, 3, 67-75.	1.1	12
136	Immunoglobulins and α1-acid glycoprotein do not contribute to the cholesterol crystallization—promoting effect of concanavalin a—binding biliary protein. Hepatology, 1994, 20, 626-632.	3.6	12
137	Heterogeneity of Human Gallbladder Mucin in Bile. Clinical Science, 1994, 86, 67-74.	1.8	14
138	Isolation of a potent cholesterol nucleation-promoting activity from human gallbladder bile: Role in the pathogenesis of gallstone disease. Hepatology, 1990, 11, 525-533.	3.6	120
139	Cholesterol nucleation-influencing activity in t-tube bile. Hepatology, 1988, 8, 347-352.	3.6	92
140	Stearoyl-CoA Desaturase Deficiency, Hypercholesterolaemia, Cholestasis and Diabetes. Novartis Foundation Symposium, 0, , 47-57.	1.2	1