Michael R. Hoffmann

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/715312/michael-r-hoffmann-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

80 184 34,557 232 h-index g-index citations papers 8.1 36,901 240 7.31 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
232	Diamond Electrode Facilitated Electrosynthesis of Water and Wastewater Treatment Oxidants. Current Opinion in Electrochemistry, 2021, 100899	7.2	1
231	Progress and Prospect of Anodic Oxidation for the Remediation of Per- and Polyfluoroalkyl Substances in Water and Wastewater using Diamond Electrodes. <i>Current Opinion in Electrochemistry</i> , 2021 , 100865	7.2	1
230	Onsite Graywater Treatment in a Two-Stage Electro-Peroxone Reactor with a Partial Recycle of Treated Effluent <i>ACS ES&T Engineering</i> , 2021 , 1, 1659-1667		0
229	Removal of Antibiotic Resistant Bacteria and Genes by UV-Assisted Electrochemical Oxidation on Degenerative TiO2 Nanotube Arrays. <i>ACS ES&T Engineering</i> , 2021 , 1, 612-622		3
228	Development of a Mechanically Flexible 2D-MXene Membrane Cathode for Selective Electrochemical Reduction of Nitrate to N: Mechanisms and Implications. <i>Environmental Science & Environmental Science</i>	10.3	14
227	Application of Heterojunction NiBbBnO2 Anodes for Electrochemical Water Treatment. <i>ACS ES&T Engineering</i> , 2021 , 1, 1236-1245		3
226	Porous carbon monoliths for electrochemical removal of aqueous herbicides by "one-stop" catalysis of oxygen reduction and HO activation. <i>Journal of Hazardous Materials</i> , 2021 , 414, 125592	12.8	4
225	Economically advantageous pathways for reducing greenhouse gas emissions from industrial hydrogen under common, current economic conditions. <i>Energy and Environmental Science</i> , 2021 , 14, 15	51 3 51 3 2	29 ¹²
224	Single-Cell Phenotypic Analysis and Digital Molecular Detection Linkable by a Hydrogel Bead-Based Platform. <i>ACS Applied Bio Materials</i> , 2021 , 4, 2664-2674	4.1	3
223	Role of Ferryl Ion Intermediates in Fast Fenton Chemistry on Aqueous Microdroplets. <i>Environmental Science & Environmental Sci</i>	10.3	5
222	Carbon nitride nanotubes with in situ grafted hydroxyl groups for highly efficient spontaneous H2O2 production. <i>Applied Catalysis B: Environmental</i> , 2021 , 288, 119993	21.8	24
221	Mixed Metal Oxide Electrodes and the Chlorine Evolution Reaction. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 20745-20761	3.8	5
220	Membrane-Based In-Gel Loop-Mediated Isothermal Amplification (mgLAMP) System for SARS-CoV-2 Quantification in Environmental Waters <i>Environmental Science & Environmental Sc</i>	10.3	4
219	In Situ-Generated Reactive Oxygen Species in Precharged Titania and Tungsten Trioxide Composite Catalyst Membrane Filters: Application to As(III) Oxidation in the Absence of Irradiation. <i>Environmental Science & Discourse Composite</i> 2020, 54, 9601-9608	10.3	10
218	Electrochemical cell lysis of gram-positive and gram-negative bacteria: DNA extraction from environmental water samples. <i>Electrochimica Acta</i> , 2020 , 338, 135864	6.7	7
217	Photochemical transformation of perfluoroalkyl acid precursors in water using engineered nanomaterials. <i>Water Research</i> , 2020 , 181, 115964	12.5	8
216	Electrocatalytic arsenite oxidation in bicarbonate solutions combined with CO2 reduction to formate. <i>Applied Catalysis B: Environmental</i> , 2020 , 265, 118607	21.8	17

(2018-2020)

215	Proton-assisted electron transfer and hydrogen-atom diffusion in a model system for photocatalytic hydrogen production. <i>Communications Materials</i> , 2020 , 1, 66	6	10
214	Rapid Detection Methods for Bacterial Pathogens in Ambient Waters at the Point of Sample Collection: A Brief Review. <i>Clinical Infectious Diseases</i> , 2020 , 71, S84-S90	11.6	15
213	3D-Printed Flow Cells for Aptamer-Based Impedimetric Detection of Crooks Strain. <i>Sensors</i> , 2020 , 20,	3.8	11
212	Enhanced photoreductive degradation of perfluorooctanesulfonate by UV irradiation in the presence of ethylenediaminetetraacetic acid. <i>Chemical Engineering Journal</i> , 2020 , 379, 122338	14.7	13
211	Enhanced chlorine evolution from dimensionally stable anode by heterojunction with Ti and Bi based mixed metal oxide layers prepared from nanoparticle slurry. <i>Journal of Catalysis</i> , 2020 , 389, 1-8	7.3	5
21 0	Peroxymonosulfate (PMS) activation on cobalt-doped TiO2 nanotubes: degradation of organics under dark and solar light irradiation conditions. <i>Environmental Science: Nano</i> , 2020 , 7, 1602-1611	7.1	18
209	Enhancing the activity of oxygen-evolution and chlorine-evolution electrocatalysts by atomic layer deposition of TiO. <i>Energy and Environmental Science</i> , 2019 , 12, 358-365	35.4	45
208	Membrane-separated electrochemical latrine wastewater treatment. <i>Environmental Science: Water Research and Technology</i> , 2019 , 5, 51-59	4.2	16
207	CO2, water, and sunlight to hydrocarbon fuels: a sustained sunlight to fuel (Joule-to-Joule) photoconversion efficiency of 1%. <i>Energy and Environmental Science</i> , 2019 , 12, 2685-2696	35.4	71
206	Activation of Peroxymonosulfate by Oxygen Vacancies-Enriched Cobalt-Doped Black TiO Nanotubes for the Removal of Organic Pollutants. <i>Environmental Science & Environmental Sc</i>	10.3	135
205	Multiphase Porous Electrochemical Catalysts Derived from Iron-Based Metal-Organic Framework Compounds. <i>Environmental Science & Environmental Science </i>	10.3	51
204	Iodide Accelerates the Processing of Biogenic Monoterpene Emissions on Marine Aerosols. <i>ACS Omega</i> , 2019 , 4, 7574-7580	3.9	4
203	High-Efficiency Solar Desalination Accompanying Electrocatalytic Conversions of Desalted Chloride and Captured Carbon Dioxide. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 15320-15328	8.3	18
202	Photoelectrochemical activity of CdS/Ag/TiO2 nanorod composites: Degradation of nitrobenzene coupled with the concomitant production of molecular hydrogen. <i>Electrochimica Acta</i> , 2019 , 328, 13512	24.7	11
201	Digital Loop-Mediated Isothermal Amplification on a Commercial Membrane. ACS Sensors, 2019, 4, 242-	-249	49
200	3D Printed Microfluidic Mixers-A Comparative Study on Mixing Unit Performances. <i>Small</i> , 2019 , 15, e18	0 4 ∄26	30
199	Cobalt-Doped Black TiO Nanotube Array as a Stable Anode for Oxygen Evolution and Electrochemical Wastewater Treatment. <i>ACS Catalysis</i> , 2018 , 8, 4278-4287	13.1	100
198	UV/Nitrilotriacetic Acid Process as a Novel Strategy for Efficient Photoreductive Degradation of Perfluorooctanesulfonate. <i>Environmental Science & Environmental Science & En</i>	10.3	43

197	Phosphate Recovery from Human Waste via the Formation of Hydroxyapatite during Electrochemical Wastewater Treatment. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 3135-3142	8.3	37
196	Role of Nitrogen Dioxide in the Production of Sulfate during Chinese Haze-Aerosol Episodes. <i>Environmental Science & Environmental Science & Environme</i>	10.3	65
195	Degradation of organic compounds in wastewater matrix by electrochemically generated reactive chlorine species: Kinetics and selectivity. <i>Catalysis Today</i> , 2018 , 313, 189-195	5.3	27
194	Incorporation of Quorum Sensing Inhibitors onto Reverse Osmosis Membranes for Biofouling Prevention in Seawater Desalination. <i>Environmental Engineering Science</i> , 2018 , 35, 261-269	2	13
193	Quantification of SO Oxidation on Interfacial Surfaces of Acidic Micro-Droplets: Implication for Ambient Sulfate Formation. <i>Environmental Science & Environmental Science & E</i>	10.3	32
192	Smartphone-Based in-Gel Loop-Mediated Isothermal Amplification (gLAMP) System Enables Rapid Coliphage MS2 Quantification in Environmental Waters. <i>Environmental Science & Environmental Science & Env</i>	10.3	31
191	Urine microbial fuel cells in a semi-controlled environment for onsite urine pre-treatment and electricity production. <i>Journal of Power Sources</i> , 2018 , 400, 441-448	8.9	26
190	Design and preliminary implementation of onsite electrochemical wastewater treatment and recycling toilets for the developing world. <i>Environmental Science: Water Research and Technology</i> , 2018 , 4, 1439-1450	4.2	34
189	Propidium monoazide pretreatment on a 3D-printed microfluidic device for efficient PCR determination of live versus dead@nicrobial cells. <i>Environmental Science: Water Research and Technology</i> , 2018 , 4, 956-964	4.2	7
188	Degradation and Mineralization of Carbamazepine Using an Electro-Fenton Reaction Catalyzed by Magnetite Nanoparticles Fixed on an Electrocatalytic Carbon Fiber Textile Cathode. <i>Environmental Science & Camp; Technology</i> , 2018 , 52, 12667-12674	10.3	71
187	Asymmetric Membrane for Digital Detection of Single Bacteria in Milliliters of Complex Water Samples. <i>ACS Nano</i> , 2018 , 12, 10281-10290	16.7	26
186	Toxic Byproduct Formation during Electrochemical Treatment of Latrine Wastewater. <i>Environmental Science & Environmental Scien</i>	10.3	102
185	Impact of humic acid on the photoreductive degradation of perfluorooctane sulfonate (PFOS) by UV/Iodide process. <i>Water Research</i> , 2017 , 127, 50-58	12.5	63
184	Criegee Intermediates React with Levoglucosan on Water. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 3888-3894	6.4	48
183	Molecular hydrogen production from wastewater electrolysis cell with multi-junction BiOx/TiO2 anode and stainless steel cathode: Current and energy efficiency. <i>Applied Catalysis B: Environmental</i> , 2017 , 202, 671-682	21.8	29
182	Photocatalytic H production on trititanate nanotubes coupled with CdS and platinum nanoparticles under visible light: revisiting H production and material durability. <i>Faraday Discussions</i> , 2017 , 198, 419-4	.3 ¹⁶	9
181	Electrochemical Transformation of Trace Organic Contaminants in Latrine Wastewater. <i>Environmental Science & Environmental Sci</i>	10.3	59
180	Degradation and Removal Methods for Perfluoroalkyl and Polyfluoroalkyl Substances in Water. <i>Environmental Engineering Science</i> , 2016 , 33, 615-649	2	198

179	Halogen Radical Chemistry at Aqueous Interfaces. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 6242-8	2.8	7
178	Multilayer Heterojunction Anodes for Saline Wastewater Treatment: Design Strategies and Reactive Species Generation Mechanisms. <i>Environmental Science & Design Strategies and Reactive Species Generation Mechanisms</i> . <i>Environmental Science & Design Strategies and Reactive Species Generation Mechanisms</i> .	10.3	68
177	Extensive H-atom abstraction from benzoate by OH-radicals at the air-water interface. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 31505-31512	3.6	18
176	"Nanofiltration" Enabled by Super-Absorbent Polymer Beads for Concentrating Microorganisms in Water Samples. <i>Scientific Reports</i> , 2016 , 6, 20516	4.9	24
175	Trilayer CdS/carbon nanofiber (CNF) mat/Pt-TiO2 composite structures for solar hydrogen production: Effects of CNF mat thickness. <i>Applied Catalysis B: Environmental</i> , 2016 , 196, 216-222	21.8	25
174	Sunlight-Activated Propidium Monoazide Pretreatment for Differentiation of Viable and Dead Bacteria by Quantitative Real-Time Polymerase Chain Reaction. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 57-61	11	14
173	"Sizing" Heterogeneous Chemistry in the Conversion of Gaseous Dimethyl Sulfide to Atmospheric Particles. <i>Environmental Science & Environmental Scienc</i>	10.3	18
172	Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell. <i>Water Research</i> , 2016 , 92, 164-72	12.5	123
171	Facet-dependent performance of BiOBr for photocatalytic reduction of Cr(VI). RSC Advances, 2016 , 6, 2028-2031	3.7	35
170	Photocatalytic conversion of carbon dioxide to methane on TiO2/CdS in aqueous isopropanol solution. <i>Catalysis Today</i> , 2016 , 266, 153-159	5.3	40
169	Mixed-Metal Semiconductor Anodes for Electrochemical Water Splitting and Reactive Chlorine Species Generation: Implications for Electrochemical Wastewater Treatment. <i>Catalysts</i> , 2016 , 6, 59	4	11
168	Synthesis and Stabilization of Blue-Black TiO Nanotube Arrays for Electrochemical Oxidant Generation and Wastewater Treatment. <i>Environmental Science & Environmental Science </i>	10.3	133
167	Lithium batteries: Improving solid-electrolyte interphases via underpotential solvent electropolymerization. <i>Chemical Physics Letters</i> , 2016 , 661, 65-69	2.5	11
166	Thermal relaxation of lithium dendrites. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 8000-5	3.6	51
165	BixTi1NOz Functionalized Heterojunction Anode with an Enhanced Reactive Chlorine Generation Efficiency in Dilute Aqueous Solutions. <i>Chemistry of Materials</i> , 2015 , 27, 2224-2233	9.6	43
164	Oxidation of Gas-Phase SO2 on the Surfaces of Acidic Microdroplets: Implications for Sulfate and Sulfate Radical Anion Formation in the Atmospheric Liquid Phase. <i>Environmental Science & Environmental Science & Technology</i> , 2015 , 49, 13768-76	10.3	89
163	OH-Radical Specific Addition to Glutathione S-Atom at the Air-Water Interface: Relevance to the Redox Balance of the Lung Epithelial Lining Fluid. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 3935-43	6.4	29
162	Annealing kinetics of electrodeposited lithium dendrites. <i>Journal of Chemical Physics</i> , 2015 , 143, 134701	3.9	37

161	Synthesis of g-C3N4/Bi2O3/TiO2 composite nanotubes: enhanced activity under visible light irradiation and improved photoelectrochemical activity. <i>RSC Advances</i> , 2015 , 5, 48983-48991	3.7	52
160	Artificial photosynthesis of C1-C3 hydrocarbons from water and CO2 on titanate nanotubes decorated with nanoparticle elemental copper and CdS quantum dots. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 4658-66	2.8	80
159	Stepwise Oxidation of Aqueous Dicarboxylic Acids by Gas-Phase OH Radicals. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 527-34	6.4	36
158	Dynamics of Lithium Dendrite Growth and Inhibition: Pulse Charging Experiments and Monte Carlo Calculations. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 1721-6	6.4	129
157	In situ mass spectrometric detection of interfacial intermediates in the oxidation of RCOOH(aq) by gas-phase OH-radicals. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 4130-7	2.8	40
156	Effects of anodic potential and chloride ion on overall reactivity in electrochemical reactors designed for solar-powered wastewater treatment. <i>Environmental Science & Environmental Science & Envir</i>	10.3	96
155	Electrochemical treatment of human waste coupled with molecular hydrogen production. <i>RSC Advances</i> , 2014 , 4, 4596-4608	3.7	56
154	Electrochemical production of hydrogen coupled with the oxidation of arsenite. <i>Environmental Science & Environmental & Enviro</i>	10.3	31
153	Urea degradation by electrochemically generated reactive chlorine species: products and reaction pathways. <i>Environmental Science & Environmental Scie</i>	10.3	78
152	Lithium Dendrite Growth Control Using Local Temperature Variation. <i>Materials Research Society Symposia Proceedings</i> , 2014 , 1680, 13		3
151	Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 24965-70	3.6	50
150	Quantum chemical insights into the dissociation of nitric acid on the surface of aqueous electrolytes. <i>International Journal of Quantum Chemistry</i> , 2013 , 113, 413-417	2.1	11
149	Tropospheric aerosol as a reactive intermediate. Faraday Discussions, 2013, 165, 407-20	3.6	22
148	Electrolysis of urea and urine for solar hydrogen. <i>Catalysis Today</i> , 2013 , 199, 2-7	5.3	61
147	Electroflotation clarifier to enhance nitrogen removal in a two-stage alternating aeration bioreactor. <i>Environmental Technology (United Kingdom)</i> , 2013 , 34, 2765-72	2.6	5
146	Brāsted basicity of the air-water interface. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 18679-83	11.5	135
145	Protonation and oligomerization of gaseous isoprene on mildly acidic surfaces: implications for atmospheric chemistry. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 6027-32	2.8	85

143	Branched polymeric media: boron-chelating resins from hyperbranched polyethylenimine. <i>Environmental Science & Environmental S</i>	10.3	35
142	Hofmeister effects in micromolar electrolyte solutions. <i>Journal of Chemical Physics</i> , 2012 , 136, 154707	3.9	42
141	Anions dramatically enhance proton transfer through aqueous interfaces. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 10228-32	11.5	48
140	Sonolytic degradation of dimethoate: kinetics, mechanisms and toxic intermediates controlling. <i>Water Research</i> , 2011 , 45, 5886-94	12.5	28
139	Kinetics of microwave-enhanced oxidation of phenol by hydrogen peroxide. <i>Frontiers of Environmental Science and Engineering in China</i> , 2011 , 5, 57-64		11
138	Reductive degradation of perfluoroalkyl compounds with aquated electrons generated from iodide photolysis at 254 nm. <i>Photochemical and Photobiological Sciences</i> , 2011 , 10, 1945-53	4.2	56
137	Conversion of gaseous nitrogen dioxide to nitrate and nitrite on aqueous surfactants. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 5144-9	3.6	36
136	Weak acids enhance halogen activation on atmospheric water@surfaces. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 4935-40	2.8	35
135	Sorption of perfluorochemicals to granular activated carbon in the presence of ultrasound. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 2250-7	2.8	56
134	Effects of Single Metal-Ion Doping on the Visible-Light Photoreactivity of TiO2. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 783-792	3.8	616
133	Confocal Fluorescence Microscopy of the Morphology and Composition of Interstitial Fluids in Freezing Electrolyte Solutions. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 374-378	6.4	34
132	Superacid Chemistry on Mildly Acidic Water. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 3488-3493	6.4	59
131	Prompt Formation of Organic Acids in Pulse Ozonation of Terpenes on Aqueous Surfaces. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 2374-2379	6.4	41
130	Proton Availability at the Air/Water Interface. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 1599-1604	6.4	97
129	Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in groundwater: kinetic effects of matrix inorganics. <i>Environmental Science & Environmental Science & Envi</i>	10.3	119
128	Photoreductive dissolution of iron oxides trapped in ice and its environmental implications. <i>Environmental Science & Environmental Envi</i>	10.3	82
127	Heterogeneous reaction of gaseous ozone with aqueous iodide in the presence of aqueous organic species. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 6016-21	2.8	50
126	Sonolytic decomposition of aqueous bioxalate in the presence of ozone. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 4968-80	2.8	42

125	Sonochemical degradation of perfluorooctanesulfonate in aqueous film-forming foams. <i>Environmental Science & Environmental Sci</i>	10.3	93
124	Combinatorial doping of TiO2 with platinum (Pt), chromium (Cr), vanadium (V), and nickel (Ni) to achieve enhanced photocatalytic activity with visible light irradiation. <i>Journal of Materials Research</i> , 2010 , 25, 149-158	2.5	59
123	Photocatalytic oxidation of aqueous ammonia over platinized microwave-assisted titanate nanotubes. <i>Applied Catalysis B: Environmental</i> , 2010 , 99, 74-80	21.8	39
122	Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA). Frontiers of Environmental Science and Engineering in China, 2009, 3, 129-151		282
121	Perfluorinated surfactant chain-length effects on sonochemical kinetics. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 9834-42	2.8	77
120	Absorption of inhaled NO(2). Journal of Physical Chemistry B, 2009, 113, 7977-81	3.4	26
119	Reductive defluorination of aqueous perfluorinated alkyl surfactants: effects of ionic headgroup and chain length. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 690-6	2.8	187
118	How phenol and alpha-tocopherol react with ambient ozone at gas/liquid interfaces. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 7002-10	2.8	33
117	Electrochemical Water Splitting Coupled with Organic Compound Oxidation: The Role of Active Chlorine Species. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 7935-7945	3.8	126
116	Solar-powered electrochemical oxidation of organic compounds coupled with the cathodic production of molecular hydrogen. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 7616-26	2.8	79
115	Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production. <i>Journal of Materials Chemistry</i> , 2008 , 18, 2379		344
114	Solar-Powered Production of Molecular Hydrogen from Water. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 885-889	3.8	64
113	Photocatalytic production of hydrogen on Ni/NiO/KNbO3/CdS nanocomposites using visible light. Journal of Materials Chemistry, 2008 , 18, 2371		100
112	Kinetics and mechanism of the sonolytic conversion of the aqueous perfluorinated surfactants, perfluorooctanoate (PFOA), and perfluorooctane sulfonate (PFOS) into inorganic products. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 4261-70	2.8	163
111	Photocatalytic Hydrogen Production with Visible Light over Pt-Interlinked Hybrid Composites of Cubic-Phase and Hexagonal-Phase CdS. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 12069-12073	3.8	177
110	Sonochemical degradation of peerfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in landfill groundwater: environmental matrix effects. <i>Environmental Science & Environmental Science & En</i>	10.3	201
109	Anion fractionation and reactivity at air/water:methanol interfaces. Implications for the origin of hofmeister effects. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 7157-61	3.4	62
108	Heterogeneous photocatalytic degradation of ethylene glycol and propylene glycol. <i>Korean Journal of Chemical Engineering</i> , 2008 , 25, 89-94	2.8	22

(2001-2007)

107	Visible-Light Photoactivity of Nitrogen-Doped TiO2: Photo-oxidation of HCO2H to CO2 and H2O. Journal of Physical Chemistry C, 2007 , 111, 15357-15362	3.8	75
106	Photocatalytic Production of H2 on Nanocomposite Catalysts. <i>Industrial & Damp; Engineering Chemistry Research</i> , 2007 , 46, 7476-7488	3.9	71
105	Photocatalytic Production of Hydrogen from Water with Visible Light Using Hybrid Catalysts of CdS Attached to Microporous and Mesoporous Silicas. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 18195-182	.03 ⁸	124
104	Sonochemical decomposition of phenol: evidence for a synergistic effect of ozone and ultrasound for the elimination of total organic carbon from water. <i>Environmental Science & Environmental Science</i>	10.3	97
103	Photogeneration of distant radical pairs in aqueous pyruvic acid glasses. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 931-5	2.8	49
102	Cooperative hydration of pyruvic acid in ice. Journal of the American Chemical Society, 2006, 128, 10621	-4 16.4	39
101	Adsorption and photodegradation of dimethyl methylphosphonate vapor at TiO(2) surfaces. Journal of Physical Chemistry B, 2005 , 109, 19779-85	3.4	77
100	TiO2-photocatalyzed As(II) oxidation in aqueous suspensions: reaction kinetics and effects of adsorption. <i>Environmental Science & Environmental Scien</i>	10.3	184
99	Hydrogen isotope effects and mechanism of aqueous ozone and peroxone decompositions. <i>Journal of the American Chemical Society</i> , 2004 , 126, 4432-6	16.4	39
98	Chemical characterization of ambient aerosol collected during the northeast monsoon season over the Arabian Sea: Anions and cations. <i>Journal of Geophysical Research</i> , 2004 , 109,		18
97	Oxidative Power of Nitrogen-Doped TiO2 Photocatalysts under Visible Illumination. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 17269-17273	3.4	520
96	Chemical characterization of ambient aerosol collected during the northeast monsoon season over the Arabian Sea: Labile-Fe(II) and other trace metals. <i>Journal of Geophysical Research</i> , 2003 , 108,		24
95	Molecular structure effects on the kinetics of hydroxyl radical addition to azo dyes. <i>Journal of Physical Organic Chemistry</i> , 2002 , 15, 287-292	2.1	18
94	The sonolytic destruction of methyl tert-butyl ether present in contaminated groundwater. <i>Water Environment Research</i> , 2002 , 74, 545-56	2.8	13
93	Electron Traps and the Stark Effect on Hydroxylated Titania Photocatalysts. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 7654-7658	3.4	109
92	Slow Surface Charge Trapping Kinetics on Irradiated TiO2. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 2922-2927	3.4	185
91	Isotopic fractionation of carbonyl sulfide in the atmosphere: Implications for the source of background stratospheric sulfate aerosol. <i>Geophysical Research Letters</i> , 2002 , 29, 112-1-112-4	4.9	28
90	Scale-Up of Sonochemical Reactors for Water Treatment. <i>Industrial & Discourse Industrial &</i>	3.9	71

89	Quantum Yields of the Photocatalytic Oxidation of Formate in Aqueous TiO2 Suspensions under Continuous and Periodic Illumination. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 1351-1354	3.4	57
88	Applications of ultrasound in NAPL remediation: sonochemical degradation of TCE in aqueous surfactant solutions. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	40
87	R. M. Harrison and S. J. De Mora: Introductory Chemistry for the Environmental Sciences. <i>Journal of Atmospheric Chemistry</i> , 2000 , 35, 322-324	3.2	
86	Kinetics and Mechanism of the Enhanced Reductive Degradation of Nitrobenzene by Elemental Iron in the Presence of Ultrasound. <i>Environmental Science & Enhanced & Environmental Science & Enhanced & Environmental Science & Enhanced & Environmental & Enviro</i>	10.3	157
85	The Sonochemical Degradation of Azobenzene and Related Azo Dyes: Rate Enhancements via Fenton@ Reactions. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 301-307	2.8	273
84	Synergistic Effects of Sonolysis Combined with Ozonolysis for the Oxidation of Azobenzene and Methyl Orange. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 8930-8935	2.8	132
83	Kinetics and Mechanism of Pentachlorophenol Degradation by Sonication, Ozonation, and Sonolytic Ozonation. <i>Environmental Science & Environmental Scie</i>	10.3	148
82	Degradation of Alkylphenol Ethoxylate Surfactants in Water with Ultrasonic Irradiation. <i>Environmental Science & Description (Company Section 2008)</i> , 2000, 34, 311-317	10.3	101
81	Photochemical transformations in ice: Implications for the fate of chemical species. <i>Geophysical Research Letters</i> , 2000 , 27, 3321-3324	4.9	71
80	Infrared Spectra of Photoinduced Species on Hydroxylated Titania Surfaces. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 9842-9850	3.4	283
79	Kinetics and Mechanism of the Sonolytic Degradation of Chlorinated Hydrocarbons: Frequency Effects. <i>Journal of Physical Chemistry A</i> , 1999 , 103, 2734-2739	2.8	150
78	Sonochemical Degradation Rates of Volatile Solutes. <i>Journal of Physical Chemistry A</i> , 1999 , 103, 2696-20	6998	73
77	Sonolytic Destruction of Methyltert-Butyl Ether by Ultrasonic Irradiation: The Role of O3, H2O2, Frequency, and Power Density. <i>Environmental Science & Environmental Science </i>	10.3	169
76	Chemical Bubble Dynamics and Quantitative Sonochemistry. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 6927-6934	2.8	149
75	Sonolytic Decomposition of Ozone in Aqueous Solution: Mass Transfer Effects. <i>Environmental Science & Environmental Science & </i>	10.3	108
74	Kinetics and Mechanism of the Enhanced Reductive Degradation of CCl4 by Elemental Iron in the Presence of Ultrasound. <i>Environmental Science & Enhanced Reductive Degradation of CCl4 by Elemental Iron in the Presence of Ultrasound.</i>	10.3	116
73	Mathematical Model of a Photocatalytic Fiber-Optic Cable Reactor for Heterogeneous Photocatalysis. <i>Environmental Science & Environmental & En</i>	10.3	73
72	Kinetics and Mechanism of the Sonolytic Destruction of Methyl tert-Butyl Ether by Ultrasonic Irradiation in the Presence of Ozone. <i>Environmental Science & Environmental Scie</i>	10.3	173

71	Aromatic Compound Degradation in Water Using a Combination of Sonolysis and Ozonolysis. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	216
70	Degradation of triethanolamine and chemical oxygen demand reduction in wastewater by photoactivated periodate. <i>Water Environment Research</i> , 1997 , 69, 1112-1119	2.8	71
69	Electrochemical Production of Hydroxyl Radical at Polycrystalline Nb-Doped TiO2 Electrodes and Estimation of the Partitioning between Hydroxyl Radical and Direct Hole Oxidation Pathways. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 2637-2643	3.4	164
68	Photoelectrochemical Degradation of 4-Chlorocatechol at TiO2Electrodes: Comparison between Sorption and Photoreactivity. <i>Environmental Science & Environmental Science & Envi</i>	10.3	86
67	Optimization of Ultrasonic Irradiation as an Advanced Oxidation Technology. <i>Environmental Science & Environmental Science</i>	10.3	349
66	Iron(III)-doped Q-sized TiO2 coatings in a fiber-optic cable photochemical reactor. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 1997 , 108, 221-228	4.7	33
65	Kinetics and Mechanism of the Sonolytic Degradation of CCl4: Intermediates and Byproducts. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	181
64	Surface Structures of 4-Chlorocatechol Adsorbed on Titanium Dioxide. <i>Environmental Science & Environmental Science & Technology</i> , 1996 , 30, 2535-2542	10.3	131
63	Chemical and Physical Characterization of a TiO2-Coated Fiber Optic Cable Reactor. <i>Environmental Science & Environmental Scie</i>	10.3	127
62	Application of ultrasonic irradiation for the degradation of chemical contaminants in water. <i>Ultrasonics Sonochemistry</i> , 1996 , 3, S163-S172	8.9	282
61	Environmental Applications of Semiconductor Photocatalysis. <i>Chemical Reviews</i> , 1995 , 95, 69-96	68.1	15722
60	Photoreductive Mechanism of CCl4 Degradation on TiO2 Particles and Effects of Electron Donors. <i>Environmental Science & Environmental </i>	10.3	154
59	Photoreduction of iron oxyhydroxides and the photooxidation of halogenated acetic acids. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	43
58	Photoreduction of iron oxyhydroxides in the presence of halogenated acetic acids: Implications for tropospheric chemistry. <i>Journal of Aerosol Science</i> , 1995 , 26, S445-S446	4.3	
57	Sonochemical degradation of p-nitrophenol in a parallel-plate near-field acoustical processor. <i>Environmental Science & Environmental </i>	10.3	124
56	Chemical mechanism of inorganic oxidants in the TiO2/UV process: increased rates of degradation of chlorinated hydrocarbons. <i>Environmental Science & Environmental Science & </i>	10.3	176
55	Development and Optimization of a TiO2-Coated Fiber-Optic Cable Reactor: Photocatalytic Degradation of 4-Chlorophenol. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	202
54	Effects of Metal-Ion Dopants on the Photocatalytic Reactivity of Quantum-Sized TiO2 Particles. Angewandte Chemie International Edition in English, 1994, 33, 1091-1092		183

53	Iron photochemistry of aqueous suspensions of ambient aerosol with added organic acids. <i>Geochimica Et Cosmochimica Acta</i> , 1994 , 58, 3271-3279	5.5	94
52	Photocatalytic Production of H2O2 and Organic Peroxides on Quantum-Sized Semiconductor Colloids. <i>Environmental Science & Environmental Science & Envi</i>	10.3	319
51	Time-resolved microwave conductivity. Part 2. Quantum-sized TiO2 and the effect of adsorbates and light intensity on charge-carrier dynamics. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1994 , 90, 3323-3330		152
50	Time-resolved microwave conductivity. Part 1. IIiO2 photoreactivity and size quantization. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1994 , 90, 3315-3322		222
49	Photocatalytic oxidation of organic acids on quantum-sized semiconductor colloids. <i>Environmental Science & Environmental Scie</i>	10.3	275
48	Stability, Stoichiometry, and Structure of Fe(II) and Fe(III) Complexes with Di-2-pyridyl Ketone Benzoylhydrazone: Environmental Applications. <i>Environmental Science & Environmental </i>	30 - 8.3	36
47	Photocatalytic degradation of pentachlorophenol on titanium dioxide particles: identification of intermediates and mechanism of reaction. <i>Environmental Science & Environmental Science & Environment</i>	39 ^{10.3}	214
46	Photoreduction of iron oxyhydroxides in the presence of important atmospheric organic compounds. <i>Environmental Science & Environmental Science & Envi</i>	10.3	162
45	Oxidation of hydrogen sulfide in aqueous solution by ultrasonic irradiation. <i>Environmental Science & Environmental & Environm</i>	10.3	74
44	Simultaneous spectrophotometric measurement of iron(II) and iron(III) in atmospheric water. <i>Environmental Science & Environmental Science & Environme</i>	10.3	80
43	. Tellus, Series B: Chemical and Physical Meteorology, 1991 , 43, 390-400	3.3	2
42	Photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions. <i>Environmental Science & Environmental &</i>	10.3	592
41	Catalytic autoxidation of hydrogen sulfide in wastewater. <i>Environmental Science & Environmental Scien</i>	10.3	60
40	Alteration of the Magnetic Properties of Aquaspirillum magnetotacticum by a Pulse Magnetization Technique. <i>Applied and Environmental Microbiology</i> , 1991 , 57, 3248-54	4.8	14
39	Fogwater chemistry at Riverside, California. <i>Atmospheric Environment Part B Urban Atmosphere</i> , 1990 , 24, 185-205		44
38	Selective transport of aldehydes across an anion-exchange membrane via the formation of bisulfite adducts. <i>Industrial & Discounty of the Engineering Chemistry Research</i> , 1990 , 29, 857-861	3.9	13
37	The chemical composition of intercepted cloudwater in the Sierra Nevada. <i>Atmospheric Environment Part A General Topics</i> , 1990 , 24, 959-972		45
36	Intensive studies of Sierra Nevada cloudwater chemistry and its relationship to precursor aerosol and gas concentrations. <i>Atmospheric Environment Part A General Topics</i> , 1990 , 24, 1741-1757		44

35	Field investigations on the snow chemistry in central and southern californial. Carbonyls and carboxylic acids. <i>Atmospheric Environment Part A General Topics</i> , 1990 , 24, 1673-1684		16
34	A comparison of two cloudwater/fogwater collectors: The rotating arm collector and the caltech active strand cloudwater collector. <i>Atmospheric Environment Part A General Topics</i> , 1990 , 24, 1685-1692		24
33	Atmospheric chemistry of peroxides: a review. <i>Atmospheric Environment Part A General Topics</i> , 1990 , 24, 1601-1633		176
32	Kinetics and mechanism of the oxidation of aqueous hydrogen sulfide by peroxymonosulfate. <i>Environmental Science & Discourse Manager Science & Discourse Manager Science & Discourse Manager M</i>	10.3	74
31	Field investigations on the snow chemistry in central and southern Californial Inorganic ions and hydrogen peroxide. <i>Atmospheric Environment Part A General Topics</i> , 1990 , 24, 1661-1671		20
30	Regulation of Dissimilatory Fe(III) Reduction Activity in Shewanella putrefaciens. <i>Applied and Environmental Microbiology</i> , 1990 , 56, 2811-7	4.8	81
29	Environmental photochemistry: Is iron oxide (hematite) an active photocatalyst? A comparative study: Fe2O3, ZnO, TiO2. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 1989 , 48, 161-169	4.7	109
28	Catalytic autoxidation of chemical contaminants by hybrid complexes of cobalt(II) phthalocyanine. <i>Environmental Science & Environmental Science & Env</i>	10.3	19
27	Analysis of aldehydes in cloud- and fogwater samples by HPLC with a postcolumn reaction detector. <i>Environmental Science & Environmental Science & Env</i>	10.3	72
26	Reductive dissolution of Fe(III) oxides by Pseudomonas sp. 200. <i>Biotechnology and Bioengineering</i> , 1988 , 32, 1081-96	4.9	171
25	Kinetics of the formation of hydroxyacetaldehyde-sulfur(IV) adducts at low pH. <i>Environmental Science & Environmental </i>	10.3	7
24	Metal ion-sulfur(IV) chemistry. 2. Kinetic studies of the redox chemistry of copper(II)-sulfur(IV) complexes. <i>Environmental Science & Environmental S</i>	10.3	63
23	Kinetics and mechanism of autoxidation of 2-mercaptoethanol catalyzed by cobalt(II)-4,4Q4Q4QQtetrasulfophthalocyanine in aqueous solution. <i>Environmental Science & Environmental Science & Technology</i> , 1988 , 22, 275-82	10.3	18
22	Aldehyde-bisulfite adducts: prediction of some of their thermodynamic and kinetic properties. <i>Environmental Science & Environmental Science & Environ</i>	10.3	37
21	Metal ion-sulfur(IV) chemistry. 3. Thermodynamics and kinetics of transient iron(III)-sulfur(IV) complexes. <i>Environmental Science & Environmental Sci</i>	10.3	93
20	Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand. <i>Environmental Science & Environmental Science & Enviro</i>	10.3 6	520
19	Henry@law constants of some environmentally important aldehydes. <i>Environmental Science & Environmental Science & Technology</i> , 1988 , 22, 1415-8	10.3	264
18	Metal ion-sulfur(IV) chemistry. 1. Structure and thermodynamics of transient copper(II)-sulfur(IV) complexes. <i>Environmental Science & Environmental S</i>	10.3	34

17	Active Transport of Formaldehyde through an Anion-Exchange Membrane via the Formation of Bisulfite Adduct. <i>Chemistry Letters</i> , 1988 , 17, 597-600	1.7	3
16	Dissimilative Iron Reduction by the Marine Eubacterium Alteromonas putrefaciens Strain 200. Water Science and Technology, 1988 , 20, 69-79	2.2	26
15	Catalytic oxidation of reduced sulfur compounds by homogeneous and heterogeneous Co(II) phthalocyanine complexes. <i>Science of the Total Environment</i> , 1987 , 64, 99-115	10.2	21
14	Kinetics and mechanism of dissimilative Fe(III) reduction by Pseudomonas sp. 200. <i>Biotechnology and Bioengineering</i> , 1986 , 28, 1657-71	4.9	36
13	Photoinduced reductive dissolution of .alphairon oxide (.alphaFe2O3) by bisulfite. <i>Environmental Science & Environmental </i>	10.3	110
12	The H2SO4-HNO3-NH3 system at high humidities and in fogs: 1. Spatial and temporal patterns in the San Joaquin Valley of California. <i>Journal of Geophysical Research</i> , 1986 , 91, 1073		91
11	Instrument to collect fogwater for chemical analysis. <i>Review of Scientific Instruments</i> , 1985 , 56, 1291-12	293 ₇	54
10	Chemical composition of fogwater collected along the California coast. <i>Environmental Science & Environmental Science</i>	10.3	132
9	A field investigation of physical and chemical mechanisms affecting pollutant concentrations in fog droplets. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 1984 , 36, 272-285	3.3	17
8	Transformation and fate of organic esters in layered-flow systems: the role of trace metal catalysis. <i>Environmental Science & Environmental Science &</i>	10.3	9
7	Development of a computer-generated equilibrium model for the variation of iron and manganese in the hypolimnion of Lake Mendota. <i>Environmental Science & Environmental Scien</i>	10.3	8
6	Characterization of soluble and colloidal phase metal complexes in river water by ultrafiltration. A mass-balance approach. <i>Environmental Science & Environmental E</i>	10.3	105
5	Thermodynamic, kinetic, and extrathermodynamic considerations in the development of equilibrium models for aquatic systems. <i>Environmental Science & Environmental Science & E</i>	10.3	32
4	Kinetics of the removal of iron pyrite from coal by microbial catalysis. <i>Applied and Environmental Microbiology</i> , 1981 , 42, 259-71	4.8	82
3	Trace metal catalysis in aquatic environments. Environmental Science & Environ	-1,066	27
2	Kinetics and mechanism of the oxidation of sulfide by oxygen: catalysis by homogeneous metal-phthalocyanine complexes. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	88
1	Kinetics and mechanism of oxidation of hydrogen sulfide by hydrogen peroxide in acidic solution. <i>Environmental Science & Environmental Science & Envi</i>	10.3	139