
Jamal Bougdira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7153009/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cu2ZnSnS4 thin films deposition by ultrasonic spray pyrolysis. Journal of Alloys and Compounds, 2012, 542, 22-27.	5.5	99
2	Photoluminescence, FTIR and X-ray diffraction studies on undoped and Al-doped ZnO thin films grown on polycrystalline α-alumina substrates by ultrasonic spray pyrolysis. Journal of Luminescence, 2010, 130, 2113-2117.	3.1	94
3	Freestanding CVD diamond elaborated by pulsed-microwave-plasma for ZnO/diamond SAW devices. Diamond and Related Materials, 2004, 13, 581-584.	3.9	56
4	Electrical resistivity and photoluminescence of zinc oxide films prepared by ultrasonic spray pyrolysis. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 106-115.	1.8	45
5	Effect of nitrogen concentration on plasma reactivity and diamond growth in a H2î—,CH4î—,N2 microwave discharge. Diamond and Related Materials, 1997, 6, 107-119.	3.9	39
6	Influence of Sn content on properties of ZnO:SnO2 thin films deposited by ultrasonic spray pyrolysis. Materials Science in Semiconductor Processing, 2013, 16, 2021-2027.	4.0	36
7	The influence of CH4 addition on composition, structure and optical characteristics of SiCN thin films deposited in a CH4/N2/Ar/hexamethyldisilazane microwave plasma. Thin Solid Films, 2011, 520, 245-250.	1.8	35
8	Deposition of tin(II) sulfide thin films by ultrasonic spray pyrolysis: Evidence of sulfur exo-diffusion. Materials Science in Semiconductor Processing, 2014, 17, 38-42.	4.0	35
9	Effects of hydrogen on iron nitriding in a pulsed plasma. Journal Physics D: Applied Physics, 1991, 24, 1076-1080.	2.8	34
10	Growth and characterisation of carbon nanostructures obtained by MPACVD system using CH4/CO2 gas mixture. Diamond and Related Materials, 2006, 15, 1041-1046.	3.9	34
11	Sulfide precursor concentration and lead source effect on PbS thin films properties. Journal of Alloys and Compounds, 2016, 666, 327-333.	5.5	29
12	Low frequency d.c. pulsed plasma for iron nitriding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 139, 15-19.	5.6	28
13	Transparent and conducting ZnO films grown by spray pyrolysis. Semiconductor Science and Technology, 2009, 24, 035006.	2.0	26
14	Combined effect of nitrogen and pulsed microwave plasma on diamond growth. Diamond and Related Materials, 1997, 6, 505-510.	3.9	23
15	Wide variations of SiCxNy:H thin films optical constants deposited by H2/N2/Ar/hexamethyldisilazane microwave plasma. Surface and Coatings Technology, 2012, 208, 46-50.	4.8	23
16	Time-resolved plasma diagnostics for a better understanding of the improvement of pulsed MWPACVD of diamond. Journal Physics D: Applied Physics, 2001, 34, 896-904.	2.8	22
17	Structural and optical properties of a-SiCN thin film synthesised in a microwave plasma at constant temperature and different flow of CH4 added to HMDSN/N2/Ar mixture. Surface and Coatings Technology, 2011, 205, S214-S217.	4.8	22
18	Cluster Agglomeration Induced by Dust-Density Waves in Complex Plasmas. Physical Review Letters, 2012, 109, 245002.	7.8	21

Jamal Bougdira

#	Article	IF	CITATIONS
19	Retrieving particle size and density from extinction measurement in dusty plasma, Monte Carlo inversion and Ray-tracing comparison. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 128, 18-26.	2.3	19
20	Spectroscopic investigation of a temporal post-discharge plasma for iron nitriding. Plasma Sources Science and Technology, 1992, 1, 117-121.	3.1	16
21	Mechanisms of diamond films deposition from MPACVD in methane-hydrogen and nitrogen mixtures. Surface and Coatings Technology, 1998, 98, 1013-1019.	4.8	15
22	Characterization of energetic and thermalized sputtered atoms in pulsed plasma using time-resolved tunable diode-laser induced fluorescence. Applied Physics Letters, 2014, 105, 181120.	3.3	15
23	Microwave Plasma Process for SiCN:H Thin Films Synthesis with Composition Varying from SiC:H to SiN:H in H ₂ /N ₂ /Ar/Hexamethyldisilazane Gas Mixture. Plasma Processes and Polymers, 2014, 11, 551-558.	3.0	13
24	Plasma synthesis of hexagonal-pyramidal graphite hillocks. Carbon, 2014, 76, 330-340.	10.3	13
25	Morphological and optoelectrical study of ZnO:In/p-Si heterojunction prepared by ultrasonic spray pyrolysis. Thin Solid Films, 2017, 628, 36-42.	1.8	13
26	Influence of gas temperature on the loss mechanisms of H-atoms in a pulsed microwave discharge identified by time-resolved LIF measurements. Plasma Sources Science and Technology, 2006, 15, 526-532.	3.1	12
27	Combined effect of nitrogen and pulsed microwave plasma on diamond growth using CH4–CO2 gas mixture. Thin Solid Films, 1998, 325, 7-13.	1.8	11
28	Role of silicon on the growth mechanisms of CNx and SiCN thin films by N2/CH4 microwave plasma assisted chemical vapour deposition. Surface and Coatings Technology, 2008, 203, 277-283.	4.8	11
29	Material effects of titanium and titanium alloys on hollow cathode discharge characteristics. Journal Physics D: Applied Physics, 1991, 24, 672-676.	2.8	10
30	Influence of mechanical and chemical silicon surface preparation on diamond nucleation and growth in CH4/H2 system discharge. Surface and Coatings Technology, 1998, 106, 53-59.	4.8	10
31	Optical emission diagnostics of permanent and pulsed microwave discharges in H2–CH4–N2 for diamond deposition. Surface and Coatings Technology, 1999, 116-119, 1233-1237.	4.8	10
32	Experimental and theoretical investigations of absorbance spectra for edge-plasma monitoring in fusion reactors. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109, 1549-1562.	2.3	10
33	Characterization of a N ₂ /CH ₄ Microwave Plasma With a Solid Additive Si Source Used for SiCN Deposition. Plasma Processes and Polymers, 2009, 6, S576.	3.0	10
34	Controlled Nanostructuration of Catalyst Particles for Carbon Nanotubes Growth. Journal of Physical Chemistry C, 2009, 113, 8718-8723.	3.1	10
35	Surface roughness of AlN films deposited on negatively biased silicon and diamond substrates. Diamond and Related Materials, 2009, 18, 1393-1400.	3.9	10
36	Formation mechanism of graphite hexagonal pyramids by argon plasma etching of graphite substrates. Journal Physics D: Applied Physics, 2015, 48, 495304.	2.8	10

Jamal Bougdira

#	Article	IF	CITATIONS
37	Chemical bath composition effect on the properties of electrodeposited CuInSe2 thin films. Journal of Alloys and Compounds, 2014, 587, 303-307.	5.5	9
38	Properties of (NiO)1-(ZnO) thin films deposited by spray pyrolysis. Thin Solid Films, 2016, 605, 116-120.	1.8	9
39	Correlation between the characteristics of a pulsed microwave plasma used for diamond growth and the properties of the produced films. Surface and Coatings Technology, 2005, 200, 1110-1116.	4.8	8
40	Influence of nitrogen incorporation on the electrical properties of MPCVD diamond films growth in CH4–CO2–N2 and CH4–H2–N2 gas mixtures. Thin Solid Films, 2000, 374, 27-33.	1.8	7
41	Preliminary Synthesis of Carbon Nitride Thin Films by N2/CH4 Microwave Plasma Assisted Chemical Vapour Deposition: Characterisation of the Discharge and the Obtained Films. Plasma Processes and Polymers, 2007, 4, S210-S214.	3.0	7
42	Synthesis of carbon coated β-SiC nanofibers by microwave plasma assisted chemical vapour deposition in CH4/H2 gas mixture. Diamond and Related Materials, 2008, 17, 1660-1665.	3.9	5
43	Characterization of ZnO/diamond SAW devices elaborated on the smooth nucleation side of MPACVD diamond. Physica Status Solidi A, 2005, 202, 2217-2223.	1.7	4
44	Experimental study of a pulsed microwave plasma assisted chemical vapour deposition of carbon nanotubes. Physica Status Solidi A, 2005, 202, 2079-2084.	1.7	4
45	Transmission electron microscopy study of carbon nanostructures grown by MPACVD in CH4/CO2 gas mixture. Diamond and Related Materials, 2007, 16, 1244-1249.	3.9	3
46	Characterization of a neutral atomic hydrogen source developed in the perspective of carbon materials etching study. Surface and Coatings Technology, 2011, 205, S384-S387.	4.8	3
47	Agglomeration processes sustained by dust density waves in Ar/C2H2 plasma: From C2H2 injection to the formation of an organized structure. Physics of Plasmas, 2013, 20, 033703.	1.9	3
48	Dynamics of dust particles in a collisional radio-frequency plasma sheath. Physica Scripta, 2014, T161, 014052.	2.5	3
49	Microstructure and opto-electrical properties of SnO <sub align="right">2:In<sub align="right">2O_{3 alloys thin films prepared by ultrasonic spray. International Journal of Nanoparticles, 2013, 6, 252.}</sub </sub>	0.3	0
50	Silicon Carbon Nitride Thin Films Deposited by Pulsed Microwave Plasma Assisted Chemical Vapour Deposition. Journal of Applied Sciences, 2017, 17, 306-314.	0.3	0