Jin Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/715298/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Na transport in bilayer MoS2 and MoS2-WS2 heterojunction with S vacancy defect: First-principles study. AIP Advances, 2022, 12, .	1.3	1
2	Superior sodium storage of Na ₃ V(PO ₃) ₃ N nanofibers as a high voltage cathode for flexible sodium-ion battery devices. Nanotechnology, 2021, 32, 435404.	2.6	5
3	Activating a Multielectron Reaction of NASICON-Structured Cathodes toward High Energy Density for Sodium-Ion Batteries. Journal of the American Chemical Society, 2021, 143, 18091-18102.	13.7	96
4	Development and Investigation of a NASICONâ€Type Highâ€Voltage Cathode Material for Highâ€Power Sodiumâ€Ion Batteries. Angewandte Chemie, 2020, 132, 2470-2477.	2.0	26
5	Development and Investigation of a NASICONâ€Type Highâ€Voltage Cathode Material for Highâ€Power Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 2449-2456.	13.8	101
6	A Cation and Anion Dual Doping Strategy for the Elevation of Titanium Redox Potential for Highâ€Power Sodiumâ€Ion Batteries. Angewandte Chemie, 2020, 132, 12174-12181.	2.0	20
7	A Cation and Anion Dual Doping Strategy for the Elevation of Titanium Redox Potential for Highâ€Power Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 12076-12083.	13.8	78
8	Nickel sulfide nanocrystals on nitrogen-doped porous carbon nanotubes with high-efficiency electrocatalysis for room-temperature sodium-sulfur batteries. Nature Communications, 2019, 10, 4793.	12.8	147
9	Perfect mechanical and robust electronic properties of new carbon nanothreads: A first principles study. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 111, 37-43.	2.7	8
10	Abnormal diffusion behaviors of Cu atoms in van der Waals layered material MoS ₂ . Journal of Materials Chemistry C, 2019, 7, 6052-6058.	5.5	18
11	NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density. Nature Communications, 2019, 10, 1480.	12.8	260
12	MoS ₂ -modified graphite felt as a high performance electrode material for zinc–polyiodide redox flow batteries. Inorganic Chemistry Frontiers, 2019, 6, 731-735.	6.0	17
13	Theoretical prediction electronic properties of Group-IV diamond nanothreads. AIP Advances, 2018, 8, 075107.	1.3	8
14	Electronic Structures and Carrier Mobilities of Blue Phosphorus Nanoribbons and Nanotubes: A First-Principles Study. Journal of Physical Chemistry C, 2016, 120, 4638-4646.	3.1	91
15	Theoretical predictions on the electronic structure and charge carrier mobility in 2D Phosphorus sheets. Scientific Reports, 2015, 5, 9961.	3.3	181
16	Carrier mobility of MoS ₂ nanoribbons with edge chemical modification. Physical Chemistry Chemical Physics, 2015, 17, 6865-6873.	2.8	47
17	First-Principles Prediction of the Charge Mobility in Black Phosphorus Semiconductor Nanoribbons. Journal of Physical Chemistry Letters, 2015, 6, 4141-4147.	4.6	51
18	Effects of van der Waals interaction and electric field on the electronic structure of bilayer MoS ₂ . Journal of Physics Condensed Matter, 2014, 26, 405302.	1.8	49

# Art	TICLE	IF	CITATIONS
19 The Nar	eoretical Prediction of Electronic Structure and Carrier Mobility in Single-walled MoS2 notubes. Scientific Reports, 2014, 4, 4327.	3.3	58