
Feng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/715263/publications.pdf Version: 2024-02-01

FENC CHEN

#	Article	IF	CITATIONS
1	Molecular Engineering of Surface Functional Groups Enabling Clinical Translation of Nanoparticle–Drug Conjugates. Chemistry of Materials, 2022, 34, 5344-5355.	3.2	8
2	Ultrasmall Nanoparticle Delivery of Doxorubicin Improves Therapeutic Index for High-Grade Glioma. Clinical Cancer Research, 2022, 28, 2938-2952.	3.2	11
3	Data Sharing and Privacy in Pharmaceutical Studies. Current Pharmaceutical Design, 2021, 27, 911-918.	0.9	1
4	Molecular Engineering of Ultrasmall Silica Nanoparticle–Drug Conjugates as Lung Cancer Therapeutics. Clinical Cancer Research, 2020, 26, 5424-5437.	3.2	21
5	Ultrasmall Core-Shell Silica Nanoparticles for Precision Drug Delivery in a High-Grade Malignant Brain Tumor Model. Clinical Cancer Research, 2020, 26, 147-158.	3.2	59
6	A Genomic Profile of Local Immunity in the Melanoma Microenvironment Following Treatment with α Particle-Emitting Ultrasmall Silica Nanoparticles. Cancer Biotherapy and Radiopharmaceuticals, 2020, 35, 459-473.	0.7	13
7	Targeted melanoma radiotherapy using ultrasmall 177Lu-labeled α-melanocyte stimulating hormone-functionalized core-shell silica nanoparticles. Biomaterials, 2020, 241, 119858.	5.7	35
8	Ultrasmall Renally Clearable Silica Nanoparticles Target Prostate Cancer. ACS Applied Materials & Interfaces, 2019, 11, 43879-43887.	4.0	27
9	Molecular phenotyping and image-guided surgical treatment of melanoma using spectrally distinct ultrasmall core-shell silica nanoparticles. Science Advances, 2019, 5, eaax5208.	4.7	36
10	Bacteria-like mesoporous silica-coated gold nanorods for positron emission tomography and photoacoustic imaging-guided chemo-photothermal combined therapy. Biomaterials, 2018, 165, 56-65.	5.7	134
11	Activatable Hybrid Nanotheranostics for Tetramodal Imaging and Synergistic Photothermal/Photodynamic Therapy. Advanced Materials, 2018, 30, 1704367.	11.1	165
12	Melanocortin-1 Receptor-Targeting Ultrasmall Silica Nanoparticles for Dual-Modality Human Melanoma Imaging. ACS Applied Materials & Interfaces, 2018, 10, 4379-4393.	4.0	40
13	Ultrasmall targeted nanoparticles with engineered antibody fragments for imaging detection of HER2-overexpressing breast cancer. Nature Communications, 2018, 9, 4141.	5.8	126
14	In Vivo Tumor-Targeted Dual-Modality PET/Optical Imaging with a Yolk/Shell-Structured Silica Nanosystem. Nano-Micro Letters, 2018, 10, 65.	14.4	31
15	General synthesis of silica-based yolk/shell hybrid nanomaterials and in vivo tumor vasculature targeting. Nano Research, 2018, 11, 4890-4904.	5.8	28
16	Chelatorâ€Free Radiolabeling of Nanographene: Breaking the Stereotype of Chelation. Angewandte Chemie, 2017, 129, 2935-2938.	1.6	9
17	Chelatorâ€Free Radiolabeling of Nanographene: Breaking the Stereotype of Chelation. Angewandte Chemie - International Edition, 2017, 56, 2889-2892.	7.2	65
18	Intrinsic and Stable Conjugation of Thiolated Mesoporous Silica Nanoparticles with Radioarsenic. ACS Applied Materials & Interfaces, 2017, 9, 6772-6781.	4.0	40

Feng Chen

#	Article	IF	CITATIONS
19	Intrinsic radiolabeling of Titanium-45 using mesoporous silica nanoparticles. Acta Pharmacologica Sinica, 2017, 38, 907-913.	2.8	47
20	Cancer-Targeting Ultrasmall Silica Nanoparticles for Clinical Translation: Physicochemical Structure and Biological Property Correlations. Chemistry of Materials, 2017, 29, 8766-8779.	3.2	58
21	Target-or-Clear Zirconium-89 Labeled Silica Nanoparticles for Enhanced Cancer-Directed Uptake in Melanoma: A Comparison of Radiolabeling Strategies. Chemistry of Materials, 2017, 29, 8269-8281.	3.2	59
22	Positron emission tomography and nanotechnology: A dynamic duo for cancer theranostics. Advanced Drug Delivery Reviews, 2017, 113, 157-176.	6.6	153
23	Dynamic Positron Emission Tomography Imaging of Renal Clearable Gold Nanoparticles. Small, 2016, 12, 2775-2782.	5.2	66
24	Intrinsically Zirconium-89 Labeled Gd ₂ O ₂ S:Eu Nanoprobes for In Vivo Positron Emission Tomography and Gamma-Ray-Induced Radioluminescence Imaging. Small, 2016, 12, 2872-2876.	5.2	32
25	Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nature Nanotechnology, 2016, 11, 977-985.	15.6	467
26	Engineering Intrinsically Zirconiumâ€89 Radiolabeled Selfâ€Destructing Mesoporous Silica Nanostructures for In Vivo Biodistribution and Tumor Targeting Studies. Advanced Science, 2016, 3, 1600122.	5.6	70
27	Biocompatibility and in vivo operation of implantable mesoporous PVDF-based nanogenerators. Nano Energy, 2016, 27, 275-281.	8.2	141
28	Re-assessing the enhanced permeability and retention effect in peripheral arterial disease using radiolabeled long circulating nanoparticles. Biomaterials, 2016, 100, 101-109.	5.7	61
29	Engineering of radiolabeled iron oxide nanoparticles for dualâ€modality imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 619-630.	3.3	43
30	Intrinsically Zr-labeled GdOS:Eu nanophosphors with high stability for dual-modality imaging. American Journal of Translational Research (discontinued), 2016, 8, 5591-5600.	0.0	4
31	Chelator-Free Labeling of Layered Double Hydroxide Nanoparticles for in Vivo PET Imaging. Scientific Reports, 2015, 5, 16930.	1.6	52
32	Nanomedicine for targeted photothermal cancer therapy: where are we now?. Nanomedicine, 2015, 10, 1-3.	1.7	169
33	<i>In Vivo</i> Integrity and Biological Fate of Chelator-Free Zirconium-89-Labeled Mesoporous Silica Nanoparticles. ACS Nano, 2015, 9, 7950-7959.	7.3	135
34	<i>In Vivo</i> Tumor Vasculature Targeting of CuS@MSN Based Theranostic Nanomedicine. ACS Nano, 2015, 9, 3926-3934.	7.3	155
35	VEGFR targeting leads to significantly enhanced tumor uptake of nanographene oxide inÂvivo. Biomaterials, 2015, 39, 39-46.	5.7	72
36	Molecular Imaging: Intrinsically Radiolabeled Nanoparticles: An Emerging Paradigm (Small 19/2014). Small, 2014, 10, 3824-3824.	5.2	1

Feng Chen

#	Article	IF	CITATIONS
37	Theranostic Nanoparticles. Journal of Nuclear Medicine, 2014, 55, 1919-1922.	2.8	235
38	Tumor Vasculature Targeting: A Generally Applicable Approach for Functionalized Nanomaterials. Small, 2014, 10, 1887-1893.	5.2	69
39	Intrinsically Radiolabeled Nanoparticles: An Emerging Paradigm. Small, 2014, 10, 3825-3830.	5.2	106
40	Intrinsically Germaniumâ€69â€Labeled Iron Oxide Nanoparticles: Synthesis and Inâ€Vivo Dualâ€Modality PET/MR Imaging. Advanced Materials, 2014, 26, 5119-5123.	11.1	158
41	New radiotracers for imaging of vascular targets in angiogenesis-related diseases. Advanced Drug Delivery Reviews, 2014, 76, 2-20.	6.6	47
42	In Vivo Tumor Vasculature Targeted PET/NIRF Imaging with TRC105(Fab)-Conjugated, Dual-Labeled Mesoporous Silica Nanoparticles. Molecular Pharmaceutics, 2014, 11, 4007-4014.	2.3	90
43	Engineering of Hollow Mesoporous Silica Nanoparticles for Remarkably Enhanced Tumor Active Targeting Efficacy. Scientific Reports, 2014, 4, 5080.	1.6	176
44	<i>In Vivo</i> Tumor Targeting and Image-Guided Drug Delivery with Antibody-Conjugated, Radiolabeled Mesoporous Silica Nanoparticles. ACS Nano, 2013, 7, 9027-9039.	7.3	314
45	Chelatorâ€Free Synthesis of a Dualâ€Modality PET/MRI Agent. Angewandte Chemie - International Edition, 2013, 52, 13319-13323.	7.2	120
46	Molecular MRI of VEGFR-2 reveals intra-tumor and inter-tumor heterogeneity. American Journal of Nuclear Medicine and Molecular Imaging, 2013, 3, 312-6.	1.0	8