Xiaolong Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7152086/publications.pdf

Version: 2024-02-01

430442 377514 1,187 41 18 34 citations h-index g-index papers 43 43 43 1221 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	In situ quantitative visualization and characterization of chitosan electrodeposition with paired sidewall electrodes. Soft Matter, 2010, 6, 3177.	1.2	150
2	Mechanism of anodic electrodeposition of calcium alginate. Soft Matter, 2011, 7, 5677.	1.2	103
3	Biofabrication: programmable assembly of polysaccharide hydrogels in microfluidics as biocompatible scaffolds. Journal of Materials Chemistry, 2012, 22, 7659.	6.7	75
4	Chitosan-mediated in situ biomolecule assembly in completely packaged microfluidic devices. Lab on A Chip, 2006, 6, 1315.	3.1	68
5	Biocompatible multi-address 3D cell assembly in microfluidic devices using spatially programmable gel formation. Lab on A Chip, 2011, 11, 2316.	3.1	68
6	Electroaddressing Functionalized Polysaccharides as Model Biofilms for Interrogating Cell Signaling. Advanced Functional Materials, 2012, 22, 519-528.	7.8	61
7	In situ generation of pH gradients in microfluidic devices for biofabrication of freestanding, semi-permeable chitosan membranes. Lab on A Chip, 2010, 10, 59-65.	3.1	57
8	Programmable assembly of a metabolic pathway enzyme in a pre-packaged reusable bioMEMS device. Lab on A Chip, 2008, 8, 420.	3.1	53
9	Anisotropic, Mesoporous Microfluidic Frameworks with Scalable, Aligned Cellulose Nanofibers. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7362-7370.	4.0	49
10	Biofabrication of stratified biofilm mimics for observation and control of bacterial signaling. Biomaterials, 2012, 33, 5136-5143.	5.7	46
11	Oral mucosa-on-a-chip to assess layer-specific responses to bacteria and dental materials. Biomicrofluidics, 2018, 12, 054106.	1.2	41
12	Optically clear alginate hydrogels for spatially controlled cell entrapment and culture at microfluidic electrode surfaces. Lab on A Chip, 2013, 13, 1854.	3.1	39
13	Biological nanofactories facilitate spatially selective capture and manipulation of quorum sensing bacteria in a bioMEMS device. Lab on A Chip, 2010, 10, 1128.	3.1	35
14	Distal modulation of bacterial cell–cell signalling in a synthetic ecosystem using partitioned microfluidics. Lab on A Chip, 2015, 15, 1842-1851.	3.1	34
15	Protein assembly onto patterned microfabricated devices through enzymatic activation of fusion proâ€tag. Biotechnology and Bioengineering, 2008, 99, 499-507.	1.7	32
16	Air bubble-initiated biofabrication of freestanding, semi-permeable biopolymer membranes in PDMS microfluidics. Biochemical Engineering Journal, 2014, 89, 2-9.	1.8	24
17	Steering air bubbles with an add-on vacuum layer for biopolymer membrane biofabrication in PDMS microfluidics. Lab on A Chip, 2017, 17, 248-255.	3.1	22
18	An Oral-mucosa-on-a-chip sensitively evaluates cell responses to dental monomers. Biomedical Microdevices, 2021, 23, 7.	1.4	22

#	Article	lF	CITATIONS
19	Conferring biological activity to native spider silk: A biofunctionalized proteinâ€based microfiber. Biotechnology and Bioengineering, 2017, 114, 83-95.	1.7	20
20	Perspectives in flow-based microfluidic gradient generators for characterizing bacterial chemotaxis. Biomicrofluidics, 2016, 10, 061301.	1.2	19
21	Microfluidic partition with in situ biofabricated semipermeable biopolymer membranes for static gradient generation. Lab on A Chip, 2016, 16, 3815-3823.	3.1	18
22	Modulating the properties of flow-assembled chitosan membranes in microfluidics with glutaraldehyde crosslinking. Journal of Materials Chemistry B, 2020, 8, 2519-2529.	2.9	18
23	Tuning the porosity of biofabricated chitosan membranes in microfluidics with co-assembled nanoparticles as templates. Materials Advances, 2020, 1, 34-44.	2.6	14
24	Integrated biofabrication for electroâ€addressed inâ€film bioprocessing. Biotechnology Journal, 2012, 7, 428-439.	1.8	13
25	Flow-assembled chitosan membranes in microfluidics: recent advances and applications. Journal of Materials Chemistry B, 2021, 9, 3258-3283.	2.9	13
26	Design optimization for bioMEMS studies of enzyme-controlled metabolic pathways. Biomedical Microdevices, 2008, 10, 899-908.	1.4	12
27	Magnetic nanoparticle-loaded alginate beads for local micro-actuation of in vitro tissue constructs. Colloids and Surfaces B: Biointerfaces, 2017, 159, 945-955.	2.5	12
28	Constructing Synthetic Ecosystems with Biopolymer Fluitrodes. Advanced Biology, 2018, 2, 1700180.	3.0	12
29	A simple capillary viscometer based on the ideal gas law. RSC Advances, 2018, 8, 30441-30447.	1.7	10
30	Interfacial Electrofabrication of Freestanding Biopolymer Membranes with Distal Electrodes. Langmuir, 2020, 36, 11034-11043.	1.6	9
31	Chemotropism among populations of yeast cells with spatiotemporal resolution in a biofabricated microfluidic platform. Biomicrofluidics, 2020, 14, 014108.	1.2	9
32	Microfluidic fabrication of stable collagen microgels with aligned microstructure using flow-driven co-deposition and ionic gelation. Journal of Micromechanics and Microengineering, 2020, 30, 085002.	1.5	7
33	Microstructural densification and alignment by aspirationâ€ejection influence cancer cell interactions with threeâ€dimensional collagen networks. Biotechnology and Bioengineering, 2020, 117, 1826-1838.	1.7	7
34	A simple and reusable bilayer membrane-based microfluidic device for the study of gradient-mediated bacterial behaviors. Biomicrofluidics, 2017, 11, 044114.	1.2	6
35	Dual-modality digital holographic and polarization microscope to quantify phase and birefringence signals in biospecimens with a complex microstructure. Biomedical Optics Express, 2022, 13, 805.	1.5	5
36	Biofabrication in Microfluidics: A Converging Fabrication Paradigm to Exploit Biology in Microsystems. Journal of Bioengineering & Biomedical Science, 2012, 02, .	0.2	3

#	Article	IF	CITATIONS
37	Bridging the Bio-Electronic Interface with Biofabrication. Journal of Visualized Experiments, 2012, , e4231.	0.2	1
38	PIV measurement of fluid flow inside a human uterus model for cryoablation. , 0, , .		0
39	In situ Biomolecule Assembly and Activity within Completely Packaged Microfluidic Devices., 2006,,.		O
40	Fabrication and Characterization of Porous Flow-Assembled Chitosan Membranes in Microfluidics. IFMBE Proceedings, 2022, , 383-392.	0.2	0
41	Integration of Diverse Biological Materials in Micro/Nano Devices. NATO Science for Peace and Security Series B: Physics and Biophysics, 2010, , 275-285.	0.2	0