Jinjun Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7152030/publications.pdf

Version: 2024-02-01

52	1,205	18	33
papers	citations	h-index	g-index
53	53	53	1083
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Flame-retardantÂeffectÂofÂhyperbranchedÂphosphazene-basedÂmicrospheresÂinÂpoly(L-lacticÂacid). Journal of Materials Science, 2022, 57, 1516-1535.	3.7	12
2	Selenopeptide Nanomedicine Activates Natural Killer Cells for Enhanced Tumor Chemoimmunotherapy. Advanced Materials, 2022, 34, e2108167.	21.0	32
3	Tunable polymorphic crystal modification, phase transition and biodegradability of poly(1,4-butylene) Tj ETQq1 1 2022, 200, 109935.	0.784314 5.8	rgBT /Ove <mark>rlo</mark> O
4	Crystallization kinetics, aggregated structure and thermal stability of biodegradable poly(ethylene) Tj ETQq0 0 0 r Polymer International, 2021, 70, 1264-1272.	gBT /Overl 3.1	ock 10 Tf 50 2
5	Dual effects of a diamide derivative as nucleator on crystallization kinetics and aggregated structure of biodegradable Poly(ethylene succinate). Polymer Testing, 2021, 94, 107022.	4.8	3
6	Linear Diamides Derivative-Nucleated Biodegradable Poly(ethylene succinate) Polyester: Crystallization Kinetics and Aggregated Structure Manipulated by Hydrogen Bond Interaction. Journal of Polymers and the Environment, 2021, 29, 3605-3617.	5.0	3
7	Self-assembly crystal, manipulated polymorphic crystalline structure and elevated thermal degradation temperature of poly(1,4-butylene adipate): Effects of an aryl bisamide-based compound. Composites Communications, 2021, 25, 100765.	6.3	5
8	Epitaxial nucleation, modulated structure of molecular aggregation, and enhanced thermal degradation temperature of poly(ethylene adipate): Effects of the naturally occurring uracil as a nucleator. Journal of Vinyl and Additive Technology, 2021, 27, 757.	3.4	0
9	Preparation of a halogen-free flame retardant and its effect on the poly(L-lactic acid) as the flame retardant material. Polymer, 2021, 229, 124027.	3.8	38
10	Biocompatible linear diamides derivative-nucleated biodegradable poly(ethylene succinate): Tailored crystallization kinetics, aggregated structure and thermal degradation. Polymer Degradation and Stability, 2021, 183, 109428.	5.8	10
11	Tailored crystallization behavior, thermal stability, and biodegradability of poly(ethylene adipate): Effects of a biocompatible diamide nucleating agent. Polymer Testing, 2020, 81, 106116.	4.8	9
12	Multiple amides derivative-nucleated poly(1,4-butylene adipate) polyester: Tailored temperature-dependent polymorphism, crystal morphology and phase transition. Polymer, 2020, 186, 122088.	3.8	12
13	Supernucleation, crystalline structure and thermal stability of bacterially synthesized poly(3-hydroxybutyrate) polyester tailored by thymine as a biocompatible nucleating agent. International Journal of Biological Macromolecules, 2020, 165, 1562-1573.	7. 5	10
14	Preparation of three-dimensional flower-like Fe-Bi(OH)3 nanocomposites and the photocatalytic properties for degradation of Rhodamine B in presence of visible light. Optik, 2020, 216, 164876.	2.9	6
15	A green method for synthesizing novel nanoparticles and their application in flexible conductive patterns. Journal of Materiomics, 2020, 6, 300-307.	5.7	10
16	Modulated crystallization behavior of bacterial copolyester poly(3-hydroxybutyrate- <i>co</i> -3-hydroxybexanoate): Effect of a linear multiple amides derivative as a nucleator. Journal of Macromolecular Science - Pure and Applied Chemistry, 2020, 57, 439-450.	2.2	10
17	Fabrication, Crystalline Behavior, Mechanical Property and In-Vivo Degradation of Poly(l–lactide) (PLLA)–Magnesium Oxide Whiskers (MgO) Nano Composites Prepared by In-Situ Polymerization. Polymers, 2019, 11, 1123.	4.5	10
18	Crystallization behavior and physical property of poly(<i>ε</i> â€caprolactone) tailored by a biocompatible linear diamide nucleating agent. Polymer Crystallization, 2019, 2, e10084.	0.8	4

#	Article	IF	CITATIONS
19	Flame Retardancy, Fire Behavior, and Flame Retardant Mechanism of Intumescent Flame Retardant EPDM Containing Ammonium Polyphosphate/Pentaerythrotol and Expandable Graphite. Materials, 2019, 12, 4035.	2.9	23
20	Polymorphism and properties of biodegradable poly(1,4â€butylene adipate) tailored using an aliphatic diamide derivative. Polymer International, 2019, 68, 351-359.	3.1	10
21	Polymorphism, thermal stability and enzymatic degradation of poly(1,4-butylene adipate) tailored by a benzene-1,3,5-tricarboxamide-based nucleating agent. Journal of Materials Science, 2018, 53, 10569-10581.	3.7	12
22	Mechanical and Gas Barrier Properties of Poly(L-Lactic Acid) by Plasma-Enhanced Chemical Vapor Deposition of SiO _{<i>x</i>} . Polymer-Plastics Technology and Engineering, 2018, 57, 581-590.	1.9	7
23	The Degradation Properties of MgO Whiskers/PLLA Composite In Vitro. International Journal of Molecular Sciences, 2018, 19, 2740.	4.1	23
24	Enhanced pH stability, cell viability and reduced degradation rate of poly(L-lactide)-based composite <i>in vitro</i> : effect of modified magnesium oxide nanoparticles. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 486-503.	3.5	13
25	Crystallization behavior of biodegradable poly(ethylene adipate) modulated by a benign nucleating agent: Zinc phenylphosphonate. Chinese Journal of Polymer Science (English Edition), 2017, 35, 558-568.	3.8	20
26	Controlled PEGylation Crowdedness for Polymeric Micelles To Pursue Ligand-Specified Privileges as Nucleic Acid Delivery Vehicles. ACS Applied Materials & Samp; Interfaces, 2017, 9, 8455-8459.	8.0	6
27	Fabrication and Physical Properties of Poly(εâ€Caprolactone)/Modified Graphene Nanocomposite. Macromolecular Materials and Engineering, 2017, 302, 1600328.	3.6	15
28	Crystal morphology, crystallization behavior, polymorphic crystalline structure and thermal stability of poly(1,4-butylene adipate) modulated by a oxalamide derivative nucleating agent. Polymer Degradation and Stability, 2017, 144, 33-42.	5.8	17
29	Tumor-Targeted Accumulation of Ligand-Installed Polymeric Micelles Influenced by Surface PEGylation Crowdedness. ACS Applied Materials & Interfaces, 2017, 9, 44045-44052.	8.0	17
30	Using a Self-Assemblable Nucleating Agent To Tailor Crystallization Behavior, Crystal Morphology, Polymorphic Crystalline Structure, and Biodegradability of Poly(1,4-butylene adipate). Industrial & mp; Engineering Chemistry Research, 2017, 56, 7910-7919.	3.7	21
31	The crystallization behaviors and mechanical properties of poly(<scp>l</scp> -lactic acid)/magnesium oxide nanoparticle composites. RSC Advances, 2016, 6, 43855-43863.	3.6	21
32	Crystallization behavior and polymorphism of poly(1,4â€butylene adipate): Effect of anhydrous orotic acid as nucleating agent. Journal of Applied Polymer Science, 2016, 133, .	2.6	5
33	Effects of modifying agents on surface modifications of magnesium oxide whiskers. Applied Surface Science, 2016, 388, 370-375.	6.1	15
34	Supramolecular nanoparticles constructed by balancing the forces between attractive host–guest and repulsive electrostatic interactions in two positively charged polymers. RSC Advances, 2015, 5, 96464-96471.	3.6	2
35	Thermal and barrier properties of stretched and annealed polylactide films. Polymer Science - Series A, 2015, 57, 738-746.	1.0	18
36	Effects of Cyanuric Acid on Crystallization Behavior, Polymorphism, and Phase Transition of Poly(butylene adipate). Industrial & Engineering Chemistry Research, 2015, 54, 8048-8055.	3.7	24

#	Article	IF	Citations
37	Studies on Comonomer Compositional Distribution of Poly(propylene carbonate-propylene oxide) Copolymer and Its Effect on the Thermal, Mechanical and Oxygen Barrier Properties of Fractions. Journal of Macromolecular Science - Physics, 2015, 54, 275-285.	1.0	4
38	Modulated crystallization behavior, polymorphic crystalline structure and enzymatic degradation of poly(butylene adipate): Effects of layered metal phosphonate. European Polymer Journal, 2015, 72, 222-237.	5.4	37
39	Polymorphic crystallization of poly(butylene adipate) and its copolymer: Effect of poly(vinyl alcohol). Journal of Applied Polymer Science, 2014, 131, .	2.6	5
40	Experimental study on advantages of foam–sol in coal dust control. Chemical Engineering Research and Design, 2014, 92, 637-644.	5.6	48
41	Fractional Crystallization and Phase Segregation in Binary Miscible Poly(butylene) Tj ETQq1 1 0.784314 rgBT /Ove Macromolecular Materials and Engineering, 2013, 298, 201-209.	erlock 10 ⁻ 3.6	Tf 50 587 To 23
42	Barrier and mechanical properties of biodegradable poly(ε <i>à€</i> caprolactone)/cellophane multilayer film. Journal of Applied Polymer Science, 2013, 130, 1805-1811.	2.6	13
43	Effects of Crystallization Temperature of Poly(vinylidene fluoride) on Crystal Modification and Phase Transition of Poly(butylene adipate) in Their Blends: A Novel Approach for Polymorphic Control. Journal of Physical Chemistry B, 2012, 116, 1265-1272.	2.6	48
44	Temperature-Variable FTIR and Solid-State ¹³ C NMR Investigations on Crystalline Structure and Molecular Dynamics of Polymorphic Poly(\scp>\-lactide) and Poly(\scp>\lactide)/Poly(\scp>d-lactide) Stereocomplex. Macromolecules, 2012, 45, 189-197.	4.8	206
45	Nucleation Effects of Nucleobases on the Crystallization Kinetics of Poly(<scp>L</scp> â€lactide). Macromolecular Materials and Engineering, 2012, 297, 670-679.	3.6	55
46	Critical role of the conformation of comonomer units in isomorphic crystallization of poly(hexamethylene adipate-co-butylene adipate) forming Poly(hexamethylene adipate) type crystal. Polymer, 2011, 52, 5204-5211.	3.8	12
47	Fractionated crystallization, polymorphic crystalline structure, and spherulite morphology of poly(butylene adipate) in its miscible blend with poly(butylene succinate). Polymer, 2011, 52, 3460-3468.	3.8	83
48	A new poly(l-lactide)-grafted graphite oxide composite: Facile synthesis, electrical properties and crystallization behaviors. Polymer Degradation and Stability, 2010, 95, 2619-2627.	5.8	49
49	Crystallization kinetics and crystalline structure of biodegradable Poly(ethylene adipate). Polymer, 2010, 51, 807-815.	3.8	44
50	Polymorphic Crystallization and Phase Transition of Poly(butylene adipate) in Its Miscible Crystalline/Crystalline Blend with Poly(vinylidene fluoride). Macromolecules, 2010, 43, 8610-8618.	4.8	95
51	Temperatureâ€dependent polymorphic crystalline structure and melting behavior of poly(butylene) Tj ETQq1 1 0. Physics, 2009, 47, 1997-2007.	784314 rg 2.1	gBT /Overloo 38
52	Transcrystal, Polymorphism, Thermal Stability and Biodegradation of Poly $(1,4$ -butylene adipate) Modulated by a Nucleobase. Journal of Polymers and the Environment, $0, 1$.	5.0	0