
Yoo Sang Jeon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7151454/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrical resistivity evolution in electrodeposited Ru and Ru-Co nanowires. Journal of Materials Science and Technology, 2022, 105, 17-25.	5.6	5
2	Engineering the shape of one-dimensional metallic nanostructures via nanopore electrochemistry. Nano Today, 2022, 42, 101348.	6.2	4
3	Submolecular Ligand Size and Spacing for Cell Adhesion. Advanced Materials, 2022, 34, e2110340.	11.1	13
4	Association between Cell Microenvironment Altered by Gold Nanowire Array and Regulation of Partial Epithelialâ€Mesenchymal Transition. Advanced Functional Materials, 2021, 31, 2008758.	7.8	6
5	Remote Switching of Elastic Movement of Decorated Ligand Nanostructures Controls the Adhesionâ€Regulated Polarization of Host Macrophages. Advanced Functional Materials, 2021, 31, 2008698.	7.8	15
6	Remote Control of Timeâ€Regulated Stretching of Ligandâ€Presenting Nanocoils In Situ Regulates the Cyclic Adhesion and Differentiation of Stem Cells. Advanced Materials, 2021, 33, e2008353.	11.1	31
7	Magnetic Nanocoils: Remote Control of Timeâ€Regulated Stretching of Ligandâ€Presenting Nanocoils In Situ Regulates the Cyclic Adhesion and Differentiation of Stem Cells (Adv. Mater. 11/2021). Advanced Materials, 2021, 33, 2170084.	11.1	0
8	Immunoregulation of Macrophages by Controlling Winding and Unwinding of Nanohelical Ligands. Advanced Functional Materials, 2021, 31, 2103409.	7.8	19
9	Magnetic Control and Realâ€Time Monitoring of Stem Cell Differentiation by the Ligand Nanoassembly. Small, 2021, 17, e2102892.	5.2	22
10	Inorganic Hollow Nanocoils Fabricated by Controlled Interfacial Reaction and Their Electrocatalytic Properties. Small, 2021, 17, e2103575.	5.2	1
11	Multi omponent Mesocrystalline Nanoparticles with Enhanced Photocatalytic Activity. Small, 2020, 16, e2004696.	5.2	9
12	Large and Externally Positioned Ligand-Coated Nanopatches Facilitate the Adhesion-Dependent Regenerative Polarization of Host Macrophages. Nano Letters, 2020, 20, 7272-7280.	4.5	21
13	Independent Tuning of Nanoâ€Ligand Frequency and Sequences Regulates the Adhesion and Differentiation of Stem Cells. Advanced Materials, 2020, 32, 2004300.	11.1	30
14	Nanoâ€Ligands: Independent Tuning of Nanoâ€Ligand Frequency and Sequences Regulates the Adhesion and Differentiation of Stem Cells (Adv. Mater. 40/2020). Advanced Materials, 2020, 32, 2070299.	11.1	0
15	<i>In Situ</i> Magnetic Control of Macroscale Nanoligand Density Regulates the Adhesion and Differentiation of Stem Cells. Nano Letters, 2020, 20, 4188-4196.	4.5	32
16	Electrical resistivity and microstructural evolution of electrodeposited Co and Co-W nanowires. Materials Characterization, 2020, 166, 110451.	1.9	12
17	Composition-driven crystal structure transformation and magnetic properties of electrodeposited Co–W alloy nanowires. Journal of Alloys and Compounds, 2020, 843, 155902.	2.8	13
18	Heat-Generating Iron Oxide Multigranule Nanoclusters for Enhancing Hyperthermic Efficacy in Tumor Treatment ACS Applied Materials & amp: Interfaces, 2020, 12, 33483-33491	4.0	30

YOO SANG JEON

#	Article	IF	CITATIONS
19	Metallic Fe–Au Barcode Nanowires as a Simultaneous T Cell Capturing and Cytokine Sensing Platform for Immunoassay at the Single-Cell Level. ACS Applied Materials & Interfaces, 2019, 11, 23901-23908.	4.0	25
20	Magnetization reversal of ferromagnetic nanosprings affected by helical shape. Nanoscale, 2018, 10, 20405-20413.	2.8	17
21	MnO ₂ Nanowire–CeO ₂ Nanoparticle Composite Catalysts for the Selective Catalytic Reduction of NO <i>_x</i> with NH ₃ . ACS Applied Materials & Interfaces, 2018, 10, 32112-32119.	4.0	32
22	Synthesis of Co nanotubes by nanoporous template-assisted electrodeposition via the incorporation of vanadyl ions. Chemical Communications, 2017, 53, 1825-1828.	2.2	10
23	Microstructure and Magnetic Properties of CoFe Nanowires and Helical Nanosprings. IEEE Transactions on Magnetics, 2017, 53, 1-4.	1.2	3
24	Magnetization Reversal of Self-Assembled One-Dimensional Chains of Fe304 Nanoparticles. , 2016, , .		0
25	Catalytic activity of vanadium oxide catalysts prepared by electrodeposition for the selective catalytic reduction of nitrogen oxides with ammonia. Reaction Kinetics, Mechanisms and Catalysis, 2016, 118, 633-641.	0.8	3
26	Size-dependent changeover in magnetization reversal mode of self-assembled one-dimensional chains of spherical Fe ₃ O ₄ nanoparticles. Japanese Journal of Applied Physics, 2016, 55, 100303.	0.8	5
27	Synthesis of Fe Doped ZnO Nanowire Arrays that Detect Formaldehyde Gas. Journal of Nanoscience and Nanotechnology, 2016, 16, 4814-4819.	0.9	4