
Vincenzo Amendola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7151353/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glucosamine to gold nanoparticles binding studied using Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 264, 120326.	2.0	6
2	Plasmonic Absorption in Antigen-Induced Aggregated Gold Nanoparticles: Toward a Figure of Merit for Optical Nanosensors. ACS Applied Nano Materials, 2022, 5, 578-586.	2.4	11
3	Artificial Neural Networks Applied to Colorimetric Nanosensors: An Undergraduate Experience Tailorable from Gold Nanoparticles Synthesis to Optical Spectroscopy and Machine Learning. Journal of Chemical Education, 2022, 99, 2112-2120.	1.1	13
4	Au–Ag Alloy Nanocorals with Optimal Broadband Absorption for Sunlight-Driven Thermoplasmonic Applications. ACS Applied Materials & Interfaces, 2022, 14, 28924-28935.	4.0	9
5	Facile synthesis by laser ablation in liquid of nonequilibrium cobalt-silver nanoparticles with magnetic and plasmonic properties. Journal of Colloid and Interface Science, 2021, 585, 267-275.	5.0	29
6	Kinetically Stable Nonequilibrium Goldâ€Cobalt Alloy Nanoparticles with Magnetic and Plasmonic Properties Obtained by Laser Ablation in Liquid. ChemPhysChem, 2021, 22, 657-664.	1.0	15
7	Laserâ€Assisted Synthesis of Nonâ€Equilibrium Nanoalloys. ChemPhysChem, 2021, 22, 622-624.	1.0	4
8	Numerical Modelling of the Optical Properties of Plasmonic and Latex Nanoparticles to Improve the Detection Limit of Immuno-Turbidimetric Assays. Nanomaterials, 2021, 11, 1147.	1.9	6
9	On the Use of Laser Fragmentation for the Synthesis of Ligand-Free Ultra-Small Iron Nanoparticles in Various Liquid Environments. Nanomaterials, 2021, 11, 1538.	1.9	4
10	Polymer-coated silver-iron nanoparticles as efficient and biodegradable MRI contrast agents. Journal of Colloid and Interface Science, 2021, 596, 332-341.	5.0	28
11	Biocompatible Iron–Boron Nanoparticles Designed for Neutron Capture Therapy Guided by Magnetic Resonance Imaging. Advanced Healthcare Materials, 2021, 10, e2001632.	3.9	24
12	Wide range detection of C-Reactive protein with a homogeneous immunofluorimetric assay based on cooperative fluorescence quenching assisted by gold nanoparticles. Biosensors and Bioelectronics, 2020, 169, 112591.	5.3	30
13	Frontispiece: Roomâ€Temperature Laser Synthesis in Liquid of Oxide, Metalâ€Oxide Coreâ€Shells, and Doped Oxide Nanoparticles. Chemistry - A European Journal, 2020, 26, .	1.7	2
14	4D Multimodal Nanomedicines Made of Nonequilibrium Au–Fe Alloy Nanoparticles. ACS Nano, 2020, 14, 12840-12853.	7.3	53
15	Sampling Optical Modes and Electronic States with Fast, Monochromated EELS. Microscopy and Microanalysis, 2020, 26, 1754-1755.	0.2	0
16	Climbing the oxygen reduction reaction volcano plot with laser ablation synthesis of Pt _x Y nanoalloys. Catalysis Science and Technology, 2020, 10, 4503-4508.	2.1	25
17	Roomâ€Temperature Laser Synthesis in Liquid of Oxide, Metalâ€Oxide Coreâ€Shells, and Doped Oxide Nanoparticles. Chemistry - A European Journal, 2020, 26, 9206-9242.	1.7	189
18	Correlation of surface-enhanced Raman scattering (SERS) with the surface density of gold nanoparticles: evaluation of the critical number of SERS tags for a detectable signal. Beilstein Journal of Nanotechnology, 2019, 10, 1016-1023.	1.5	11

#	Article	IF	CITATIONS
19	One-step synthesis of Fe–Au core–shell magnetic-plasmonic nanoparticles driven by interface energy minimization. Nanoscale Horizons, 2019, 4, 1326-1332.	4.1	62
20	Facile synthesis of Pd3Y alloy nanoparticles for electrocatalysis of the oxygen reduction reaction. Electrochimica Acta, 2019, 320, 134563.	2.6	23
21	Electronic Structure-Dependent Surface Plasmon Resonance in Single Au–Fe Nanoalloys. Nano Letters, 2019, 19, 5754-5761.	4.5	37
22	Magnetic tuning of SERS hot spots in polymer-coated magnetic–plasmonic iron–silver nanoparticles. Nanoscale Advances, 2019, 1, 2681-2689.	2.2	22
23	A system for the synthesis of nanoparticles by laser ablation in liquid that is remotely controlled with PC or smartphone. Review of Scientific Instruments, 2019, 90, 033902.	0.6	42
24	Clean rhodium nanoparticles prepared by laser ablation in liquid for high performance electrocatalysis of the hydrogen evolution reaction. Nanoscale Advances, 2019, 1, 4296-4300.	2.2	17
25	Nanoaggregates of iron poly-oxo-clusters obtained by laser ablation in aqueous solution of phosphonates. Journal of Colloid and Interface Science, 2018, 522, 208-216.	5.0	14
26	Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics Condensed Matter, 2017, 29, 203002.	0.7	1,184
27	Enhanced Electrocatalytic Oxygen Evolution in Au–Fe Nanoalloys. Angewandte Chemie - International Edition, 2017, 56, 6589-6593.	7.2	72
28	Enhanced Electrocatalytic Oxygen Evolution in Au–Fe Nanoalloys. Angewandte Chemie, 2017, 129, 6689-6693.	1.6	5
29	Opportunities and Challenges for Laser Synthesis of Colloids. ChemPhysChem, 2017, 18, 983-985.	1.0	32
30	A quarter-century of nanoparticle generation by lasers in liquids: Where are we now, and what's next?. Journal of Colloid and Interface Science, 2017, 489, 1-2.	5.0	12
31	Formation of alloy nanoparticles by laser ablation of Au/Fe multilayer films in liquid environment. Journal of Colloid and Interface Science, 2017, 489, 18-27.	5.0	81
32	Highâ€Purity Hybrid Organolead Halide Perovskite Nanoparticles Obtained by Pulsed‣aser Irradiation in Liquid. ChemPhysChem, 2017, 18, 1047-1054.	1.0	23
33	Magnetically Assembled SERS Substrates Composed of Iron–Silver Nanoparticles Obtained by Laser Ablation in Liquid. ChemPhysChem, 2017, 18, 1026-1034.	1.0	31
34	Synthesis of Gold Nanoparticles in Liquid Environment by Laser Ablation with Geometrically Confined Configurations: Insights To Improve Size Control and Productivity. Journal of Physical Chemistry C, 2016, 120, 9453-9463.	1.5	77
35	Donor–Acceptor Interfaces by Engineered Nanoparticles Assemblies for Enhanced Efficiency in Plastic Planar Heterojunction Solar Cells. Journal of Physical Chemistry C, 2016, 120, 26588-26599.	1.5	9
36	Sedimentation field flow fractionation and optical absorption spectroscopy for a quantitative size characterization of silver nanoparticles. Journal of Chromatography A, 2016, 1471, 178-185.	1.8	11

#	Article	IF	CITATIONS
37	Detection of low-quantity anticancer drugs by surface-enhanced Raman scattering. Analytical and Bioanalytical Chemistry, 2016, 408, 2123-2131.	1.9	37
38	Water oxidation electrocatalysis with iron oxide nanoparticles prepared via laser ablation. Journal of Energy Chemistry, 2016, 25, 246-250.	7.1	23
39	Surface plasmon resonance of silver and gold nanoparticles in the proximity of graphene studied using the discrete dipole approximation method. Physical Chemistry Chemical Physics, 2016, 18, 2230-2241.	1.3	69
40	Barrierless growth of precursor-free, ultrafast laser-fragmented noble metal nanoparticles by colloidal atom clusters – A kinetic in situ study. Journal of Colloid and Interface Science, 2016, 463, 299-307.	5.0	52
41	A General Technique to Investigate the Aggregation of Nanoparticles by Transmission Electron Microscopy. Journal of Nanoscience and Nanotechnology, 2015, 15, 3545-3551.	0.9	10
42	Metastable alloy nanoparticles, metal-oxide nanocrescents and nanoshells generated by laser ablation in liquid solution: influence of the chemical environment on structure and composition. Physical Chemistry Chemical Physics, 2015, 17, 28076-28087.	1.3	75
43	Laser generated gold nanocorals with broadband plasmon absorption for photothermal applications. Nanoscale, 2015, 7, 13702-13714.	2.8	49
44	Superior plasmon absorption in iron-doped gold nanoparticles. Nanoscale, 2015, 7, 8782-8792.	2.8	52
45	Scaling of optical forces on Au–PEG core–shell nanoparticles. RSC Advances, 2015, 5, 93139-93146.	1.7	15
46	Laser generation of iron-doped silver nanotruffles with magnetic and plasmonic properties. Nano Research, 2015, 8, 4007-4023.	5.8	61
47	Magneto-Plasmonic Au-Fe Alloy Nanoparticles Designed for Multimodal SERS-MRI-CT Imaging. Small, 2014, 10, 3823-3823.	5.2	4
48	Physico-Chemical Characteristics of Gold Nanoparticles. Comprehensive Analytical Chemistry, 2014, 66, 81-152.	0.7	25
49	Strong dependence of surface plasmon resonance and surface enhanced Raman scattering on the composition of Au–Fe nanoalloys. Nanoscale, 2014, 6, 1423-1433.	2.8	98
50	SERS Properties of Gold Nanorods at Resonance with Molecular, Transverse, and Longitudinal Plasmon Excitations. Plasmonics, 2014, 9, 581-593.	1.8	36
51	Magnetoâ€Plasmonic Auâ€Fe Alloy Nanoparticles Designed for Multimodal SERSâ€MRIâ€CT Imaging. Small, 2014 10, 2476-2486.	, 5.2	156
52	Efficient AuFeO _{<i>x</i>} Nanoclusters of Laser-Ablated Nanoparticles in Water for Cells Guiding and Surface-Enhanced Resonance Raman Scattering Imaging. Journal of Physical Chemistry C, 2014, 118, 14534-14541.	1.5	16
53	What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution?. Physical Chemistry Chemical Physics, 2013, 15, 3027-3046.	1.3	593
54	Coexistence of plasmonic and magnetic properties in Au89Fe11 nanoalloys. Nanoscale, 2013, 5, 5611.	2.8	92

#	Article	IF	CITATIONS
55	Sorting Nanoparticles by Centrifugal Fields in Clean Media. Journal of Physical Chemistry C, 2013, 117, 13217-13229.	1.5	83
56	LDI-MS Assisted by Chemical-Free Gold Nanoparticles: Enhanced Sensitivity and Reduced Background in the Low-Mass Region. Analytical Chemistry, 2013, 85, 11747-11754.	3.2	63
57	Advances in self-healing optical materials. Journal of Materials Chemistry, 2012, 22, 24501.	6.7	47
58	Structural and magnetic properties of mesoporous SiO2 nanoparticles impregnated with iron oxide or cobalt-iron oxide nanocrystals. Journal of Materials Chemistry, 2012, 22, 19276.	6.7	35
59	Serrs: Plasmonic Nanostructures for SERRS Multiplexed Identification of Tumorâ€Associated Antigens (Small 24/2012). Small, 2012, 8, 3860-3860.	5.2	2
60	Plasmonic Nanostructures for SERRS Multiplexed Identification of Tumorâ€Associated Antigens. Small, 2012, 8, 3733-3738.	5.2	35
61	Exploring How to Increase the Brightness of Surfaceâ€Enhanced Raman Spectroscopy Nanolabels: The Effect of the Ramanâ€Active Molecules and of the Label Size. Advanced Functional Materials, 2012, 22, 353-360.	7.8	67
62	Laser Ablation Synthesis of Silver Nanoparticles Embedded in Graphitic Carbon Matrix. Science of Advanced Materials, 2012, 4, 497-500.	0.1	15
63	Manipulation and Raman Spectroscopy with Optically Trapped Metal Nanoparticles Obtained by Pulsed Laser Ablation in Liquids. Journal of Physical Chemistry C, 2011, 115, 5115-5122.	1.5	65
64	Top-down synthesis of multifunctional iron oxide nanoparticles for macrophage labelling and manipulation. Journal of Materials Chemistry, 2011, 21, 3803.	6.7	82
65	Magnetic Nanoparticles of Iron Carbide, Iron Oxide, Iron@Iron Oxide, and Metal Iron Synthesized by Laser Ablation in Organic Solvents. Journal of Physical Chemistry C, 2011, 115, 5140-5146.	1.5	204
66	SERS labels for quantitative assays: application to the quantification of gold nanoparticles uptaken by macrophage cells. Analytical Methods, 2011, 3, 849.	1.3	27
67	Polymer control of ligand display on gold nanoparticles for multimodal switchable cell targeting. Chemical Communications, 2011, 47, 9846.	2.2	55
68	Plasmon-Enhanced Optical Trapping of Gold Nanoaggregates with Selected Optical Properties. ACS Nano, 2011, 5, 905-913.	7.3	84
69	Magnetic iron oxide nanoparticles with tunable size and free surface obtained via a "green―approach based on laser irradiation in water. Journal of Materials Chemistry, 2011, 21, 18665.	6.7	55
70	A Study of the Surface Plasmon Resonance of Silver Nanoparticles by the Discrete Dipole Approximation Method: Effect of Shape, Size, Structure, and Assembly. Plasmonics, 2010, 5, 85-97.	1.8	565
71	Plasmon-enhanced optical trapping of metal nanoparticles: force calculations and light-driven rotations of nanoaggregates. , 2010, , .		2
72	Silver Nanoparticles with Broad Multiband Linear Optical Absorption. Angewandte Chemie - International Edition, 2009, 48, 5921-5926.	7.2	235

#	Article	IF	CITATIONS
73	Size Evaluation of Gold Nanoparticles by UVâ^'vis Spectroscopy. Journal of Physical Chemistry C, 2009, 113, 4277-4285.	1.5	522
74	Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Physical Chemistry Chemical Physics, 2009, 11, 3805.	1.3	756
75	Self-healing at the nanoscale. Nanoscale, 2009, 1, 74.	2.8	136
76	Self-Healing of Gold Nanoparticles in the Presence of Zinc Phthalocyanines and Their Very Efficient Nonlinear Absorption Performances. Journal of Physical Chemistry C, 2009, 113, 8688-8695.	1.5	46
77	Cell up-take control of gold nanoparticles functionalized with a thermoresponsive polymer. Journal of Materials Chemistry, 2009, 19, 1608.	6.7	118
78	Light Localization Effect on the Optical Properties of Opals Doped with Gold Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 6293-6298.	1.5	40
79	Large Two-Photon Absorption Cross Sections of Hemiporphyrazines in the Excited State: The Multiphoton Absorption Process of Hemiporphyrazines with Different Central Metals. Journal of the American Chemical Society, 2008, 130, 12290-12298.	6.6	37
80	In situ tuning of a photonic band gap with laser pulses. Applied Physics Letters, 2008, 93, 091111.	1.5	12
81	Sequential multiphoton absorption enhancement induced by zinc complexation in functionalized distyrylbenzene analogs. Physical Chemistry Chemical Physics, 2007, 9, 616-621.	1.3	9
82	Controlled size manipulation of free gold nanoparticles by laser irradiation and their facile bioconjugation. Journal of Materials Chemistry, 2007, 17, 4705.	6.7	130
83	Free Silver Nanoparticles Synthesized by Laser Ablation in Organic Solvents and Their Easy Functionalization. Langmuir, 2007, 23, 6766-6770.	1.6	153
84	Colloidal Photonic Crystals Doped with Gold Nanoparticles: Spectroscopy and Optical Switching Properties. Advanced Functional Materials, 2007, 17, 2779-2786.	7.8	102
85	Demonstration of the optical limiting effect for an hemiporphyrazine. Chemical Communications, 2006, , 2394.	2.2	26
86	Synthesis and excited state properties of a [60]fullerene derivative bearing a star-shaped multi-photon absorption chromophore. Chemical Communications, 2006, , 2054-2056.	2.2	33
87	Laser Ablation Synthesis of Gold Nanoparticles in Organic Solvents. Journal of Physical Chemistry B, 2006, 110, 7232-7237.	1.2	169
88	Excited State Dynamics and Nonlinear Absorption of a Pyrazinoporphyrazine Macrocycle Carrying Externally Appended Pyridine Rings. Journal of Physical Chemistry B, 2006, 110, 24354-24360.	1.2	29
89	Optical effects in artificial opals infiltrated with gold nanoparticles. , 2006, , .		4
90	Synthesis of Gold Nanoparticles by Laser Ablation in Toluene:  Quenching and Recovery of the Surface Plasmon Absorption. Journal of Physical Chemistry B, 2005, 109, 23125-23128.	1.2	122

#	Article	IF	CITATIONS
91	Fullerene non-linear excited state absorption induced by gold nanoparticles light harvesting. Synthetic Metals, 2005, 155, 283-286.	2.1	30
92	Nonlinear optical effects related to saturable and reverse saturable absorption by subphthalocyanines at 532 nm. Chemical Communications, 2005, , 3796.	2.2	45