Gerald T Ankley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7151319/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Linking Mechanistic Effects of Pharmaceuticals and Personal Care Products to Ecologically Relevant Outcomes: A Decade of Progress. Environmental Toxicology and Chemistry, 2024, 43, 537-548.	4.3	4
2	The Ecoâ€Exposome Concept: Supporting an Integrated Assessment of Mixtures of Environmental Chemicals. Environmental Toxicology and Chemistry, 2022, 41, 30-45.	4.3	25
3	A Multidimensional Matrix Model for Predicting the Effects of Maleâ€Biased Sex Ratios on Fish Populations. Environmental Toxicology and Chemistry, 2022, , .	4.3	1
4	Leveraging ToxCast Data and Protein Sequence Conservation to Complement Aquatic Life Criteria Derivation. Integrated Environmental Assessment and Management, 2022, , .	2.9	1
5	Assessing the Ecological Risks of Per―and Polyfluoroalkyl Substances: Current Stateâ€ofâ€the Science and a Proposed Path Forward. Environmental Toxicology and Chemistry, 2021, 40, 564-605.	4.3	166
6	Simultaneous determination of a suite of endogenous steroids by LC-APPI-MS: Application to the identification of endocrine disruptors in aquatic toxicology. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1163, 122513.	2.3	7
7	Assessing effects of aromatase inhibition on fishes with group-synchronous oocyte development using western mosquitofish (Gambusia affinis) as a model. Aquatic Toxicology, 2021, 232, 105741.	4.0	4
8	Case Study in 21st Century Ecotoxicology: Using In Vitro Aromatase Inhibition Data to Predict Shortâ€īerm In Vivo Responses in Adult Female Fish. Environmental Toxicology and Chemistry, 2021, 40, 1155-1170.	4.3	11
9	Endogenous Lifecycle Models for Chemical Risk Assessment. Environmental Science & Technology, 2021, 55, 15596-15608.	10.0	6
10	Conversion of Estrone to 17βâ€Estradiol: A Potential Confounding Factor in Assessing Risks of Environmental Estrogens to Fish. Environmental Toxicology and Chemistry, 2020, 39, 2028-2040.	4.3	6
11	Toward Sustainable Environmental Quality: Priority Research Questions for Asia. Environmental Toxicology and Chemistry, 2020, 39, 1485-1505.	4.3	38
12	A method for CRISPR/Cas9 mutation of genes in fathead minnow (Pimephales promelas). Aquatic Toxicology, 2020, 222, 105464.	4.0	7
13	Toward an AOP Network-Based Tiered Testing Strategy for the Assessment of Thyroid Hormone Disruption. Environmental Science & Technology, 2020, 54, 8491-8499.	10.0	48
14	Adverse Outcome Pathway Network–Based Assessment of the Interactive Effects of an Androgen Receptor Agonist and an Aromatase Inhibitor on Fish Endocrine Function. Environmental Toxicology and Chemistry, 2020, 39, 913-922.	4.3	15
15	Effect of Thyroperoxidase and Deiodinase Inhibition on Anterior Swim Bladder Inflation in the Zebrafish. Environmental Science & Technology, 2020, 54, 6213-6223.	10.0	31
16	Quantitative Response-Response Relationships Linking Aromatase Inhibition to Decreased Fecundity are Conserved Across Three Fishes with Asynchronous Oocyte Development. Environmental Science & Technology, 2019, 53, 10470-10478.	10.0	22
17	Toward Sustainable Environmental Quality: Priority Research Questions for North America. Environmental Toxicology and Chemistry, 2019, 38, 1606-1624.	4.3	43
18	Prioritizing chemicals of ecological concern in Great Lakes tributaries using high-throughput screening data and adverse outcome pathways. Science of the Total Environment, 2019, 686, 995-1009.	8.0	70

#	Article	IF	CITATIONS
19	Differential Sensitivity to In Vitro Inhibition of Cytochrome P450 Aromatase (CYP19) Activity Among 18 Freshwater Fishes. Toxicological Sciences, 2019, 170, 394-403.	3.1	16
20	Potential Toxicity of Complex Mixtures in Surface Waters from a Nationwide Survey of United States Streams: Identifying in Vitro Bioactivities and Causative Chemicals. Environmental Science & Technology, 2019, 53, 973-983.	10.0	75
21	Methods of Mutation Efficiency Analysis for CRISPR/Cas9 in Fathead Minnow. FASEB Journal, 2019, 33, 626.3.	0.5	0
22	Estimating Intermittent Individual Spawning Behavior via Disaggregating Group Data. Bulletin of Mathematical Biology, 2018, 80, 687-700.	1.9	1
23	Differentiating Pathway-Specific From Nonspecific Effects in High-Throughput Toxicity Data: A Foundation for Prioritizing Adverse Outcome Pathway Development. Toxicological Sciences, 2018, 163, 500-515.	3.1	43
24	An AOP-based alternative testing strategy to predict the impact of thyroid hormone disruption on swim bladder inflation in zebrafish. Aquatic Toxicology, 2018, 200, 1-12.	4.0	28
25	A critical review of the environmental occurrence and potential effects in aquatic vertebrates of the potent androgen receptor agonist 17βâ€ŧrenbolone. Environmental Toxicology and Chemistry, 2018, 37, 2064-2078.	4.3	39
26	The adverse outcome pathway: A multifaceted framework supporting 21st century toxicology. Current Opinion in Toxicology, 2018, 9, 1-7.	5.0	79
27	Highâ€resolution mass spectrometry of skin mucus for monitoring physiological impacts and contaminant biotransformation products in fathead minnows exposed to wastewater effluent. Environmental Toxicology and Chemistry, 2018, 37, 788-796.	4.3	22
28	Evidence for Cross Species Extrapolation of Mammalian-Based High-Throughput Screening Assay Results. Environmental Science & Technology, 2018, 52, 13960-13971.	10.0	45
29	Toward sustainable environmental quality: Priority research questions for Europe. Environmental Toxicology and Chemistry, 2018, 37, 2281-2295.	4.3	98
30	Gene transcription ontogeny of hypothalamic-pituitary-thyroid axis development in early-life stage fathead minnow and zebrafish. General and Comparative Endocrinology, 2018, 266, 87-100.	1.8	45
31	Effects of the antimicrobial contaminant triclocarban, and coâ€exposure with the androgen 17βâ€ŧrenbolone, on reproductive function and ovarian transcriptome of the fathead minnow (<i>Pimephales promelas</i>). Environmental Toxicology and Chemistry, 2017, 36, 231-242.	4.3	18
32	Weight of evidence evaluation of a network of adverse outcome pathways linking activation of the nicotinic acetylcholine receptor in honey bees to colony death. Science of the Total Environment, 2017, 584-585, 751-775.	8.0	45
33	Recommended approaches to the scientific evaluation of ecotoxicological hazards and risks of endocrine-active substances. Integrated Environmental Assessment and Management, 2017, 13, 267-279.	2.9	38
34	Practical approaches to adverse outcome pathway development and weightâ€ofâ€evidence evaluation as illustrated by ecotoxicological case studies. Environmental Toxicology and Chemistry, 2017, 36, 1429-1449.	4.3	39
35	Advancing the adverse outcome pathway framework—An international horizon scanning approach. Environmental Toxicology and Chemistry, 2017, 36, 1411-1421.	4.3	58
36	Derivation and Evaluation of Putative Adverse Outcome Pathways for the Effects of Cyclooxygenase Inhibitors on Reproductive Processes in Female Fish. Toxicological Sciences, 2017, 156, 344-361.	3.1	14

#	Article	IF	CITATIONS
37	Re-evaluating the Significance of Estrone as an Environmental Estrogen. Environmental Science & Technology, 2017, 51, 4705-4713.	10.0	60
38	Quantitative Adverse Outcome Pathways and Their Application to Predictive Toxicology. Environmental Science & Technology, 2017, 51, 4661-4672.	10.0	155
39	Current limitations and recommendations to improve testing for the environmental assessment of endocrine active substances. Integrated Environmental Assessment and Management, 2017, 13, 302-316.	2.9	35
40	Prior knowledge-based approach for associating contaminants with biological effects: A case study in the St. Croix River basin, MN, WI, USA. Environmental Pollution, 2017, 221, 427-436.	7.5	15
41	How Adverse Outcome Pathways Can Aid the Development and Use of Computational Prediction Models for Regulatory Toxicology. Toxicological Sciences, 2017, 155, 326-336.	3.1	125
42	Firstâ€generation annotations for the fathead minnow (<i>Pimephales promelas</i>) genome. Environmental Toxicology and Chemistry, 2017, 36, 3436-3442.	4.3	18
43	Impaired swim bladder inflation in early life stage fathead minnows exposed to a deiodinase inhibitor, iopanoic acid. Environmental Toxicology and Chemistry, 2017, 36, 2942-2952.	4.3	17
44	Rapid effects of the aromatase inhibitor fadrozole on steroid production and gene expression in the ovary of female fathead minnows (Pimephales promelas). General and Comparative Endocrinology, 2017, 252, 79-87.	1.8	17
45	The Role of Omics in the Application of Adverse Outcome Pathways for Chemical Risk Assessment. Toxicological Sciences, 2017, 158, 252-262.	3.1	161
46	Prioritization of Contaminants of Emerging Concern in Wastewater Treatment Plant Discharges Using Chemical:Gene Interactions in Caged Fish. Environmental Science & Technology, 2017, 51, 8701-8712.	10.0	18
47	An "EAR―on Environmental Surveillance and Monitoring: A Case Study on the Use of Exposure–Activity Ratios (EARs) to Prioritize Sites, Chemicals, and Bioactivities of Concern in Great Lakes Waters. Environmental Science & Technology, 2017, 51, 8713-8724.	10.0	81
48	An integrated approach for identifying priority contaminant in the Great Lakes Basin – Investigations in the Lower Green Bay/Fox River and Milwaukee Estuary areas of concern. Science of the Total Environment, 2017, 579, 825-837.	8.0	28
49	The Next Generation of Risk Assessment Multi-Year Study—Highlights of Findings, Applications to Risk Assessment, and Future Directions. Environmental Health Perspectives, 2016, 124, 1671-1682.	6.0	74
50	Predicting Fecundity of Fathead Minnows (Pimephales promelas) Exposed to Endocrine-Disrupting Chemicals Using a MATLAB®-Based Model of Oocyte Growth Dynamics. PLoS ONE, 2016, 11, e0146594.	2.5	12
51	Prioritization of pharmaceuticals for potential environmental hazard through leveraging a largeâ€scale mammalian pharmacological dataset. Environmental Toxicology and Chemistry, 2016, 35, 1007-1020.	4.3	43
52	Editor's Highlight: Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS): A Web-Based Tool for Addressing the Challenges of Cross-Species Extrapolation of Chemical Toxicity. Toxicological Sciences, 2016, 153, 228-245.	3.1	105
53	Pathwayâ€based approaches for assessment of realâ€time exposure to an estrogenic wastewater treatment plant effluent on fathead minnow reproduction. Environmental Toxicology and Chemistry, 2016, 35, 702-716.	4.3	34
54	Linking fieldâ€based metabolomics and chemical analyses to prioritize contaminants of emerging concern in the Great Lakes basin. Environmental Toxicology and Chemistry, 2016, 35, 2493-2502.	4.3	36

#	Article	IF	CITATIONS
55	Evaluation of the scientific underpinnings for identifying estrogenic chemicals in nonmammalian taxa using mammalian test systems. Environmental Toxicology and Chemistry, 2016, 35, 2806-2816.	4.3	33
56	Environmental surveillance and monitoring—The next frontiers for highâ€ŧhroughput toxicology. Environmental Toxicology and Chemistry, 2016, 35, 513-525.	4.3	70
57	Sequencing and de novo draft assemblies of a fathead minnow (<i>Pimephales promelas</i>) reference genome. Environmental Toxicology and Chemistry, 2016, 35, 212-217.	4.3	29
58	Computational model of the fathead minnow hypothalamic–pituitary–gonadal axis: Incorporating protein synthesis in improving predictability of responses to endocrine active chemicals. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2016, 183-184, 36-45.	2.6	3
59	Pathway-Based Approaches for Environmental Monitoring and Risk Assessment. Environmental Science & Technology, 2016, 50, 10295-10296.	10.0	12
60	A study of temporal effects of the model anti-androgen flutamide on components of the hypothalamic-pituitary-gonadal axis in adult fathead minnows. Aquatic Toxicology, 2016, 180, 164-172.	4.0	1
61	Editor's Highlight: Computational Modeling of Plasma Vitellogenin Alterations in Response to Aromatase Inhibition in Fathead Minnows. Toxicological Sciences, 2016, 154, 78-89.	3.1	10
62	Pathway-Based Approaches for Environmental Monitoring and Risk Assessment. Chemical Research in Toxicology, 2016, 29, 1789-1790.	3.3	9
63	Impaired anterior swim bladder inflation following exposure to the thyroid peroxidase inhibitor 2-mercaptobenzothiazole part II: Zebrafish. Aquatic Toxicology, 2016, 173, 204-217.	4.0	56
64	Fish connectivity mapping: linking chemical stressors by their mechanisms of action-driven transcriptomic profiles. BMC Genomics, 2016, 17, 84.	2.8	15
65	Impaired anterior swim bladder inflation following exposure to the thyroid peroxidase inhibitor 2-mercaptobenzothiazole part I: Fathead minnow. Aquatic Toxicology, 2016, 173, 192-203.	4.0	40
66	Linking mechanistic toxicology to population models in forecasting recovery from chemical stress: A case study from Jackfish Bay, Ontario, Canada. Environmental Toxicology and Chemistry, 2015, 34, 1623-1633.	4.3	19
67	The potential of AOP networks for reproductive and developmental toxicity assay development. Reproductive Toxicology, 2015, 56, 52-55.	2.9	88
68	Increasing Scientific Confidence in Adverse Outcome Pathways: Application of Tailored Bradford-Hill Considerations for Evaluating Weight of Evidence. Regulatory Toxicology and Pharmacology, 2015, 72, 514-537.	2.7	198
69	Temporal Changes in Biological Responses and Uncertainty in Assessing Risks of Endocrine-Disrupting Chemicals: Insights from Intensive Time-Course Studies with Fish. Toxicological Sciences, 2015, 144, 259-275.	3.1	51
70	Environmental hormones and their impacts on sex differentiation in fathead minnows. Aquatic Toxicology, 2015, 158, 98-107.	4.0	33
71	Integrated assessment of runoff from livestock farming operations: Analytical chemistry, in vitro bioassays, and in vivo fish exposures. Environmental Toxicology and Chemistry, 2014, 33, 1849-1857.	4.3	40
72	International scientists' priorities for research on pharmaceutical and personal care products in the environment. Integrated Environmental Assessment and Management, 2014, 10, 576-587.	2.9	90

#	Article	IF	CITATIONS
73	A novel framework for interpretation of data from the fish shortâ€term reproduction assay (FSTRA) for the detection of endocrineâ€disrupting chemicals. Environmental Toxicology and Chemistry, 2014, 33, 2529-2540.	4.3	34
74	An interâ€laboratory study on the variability in measured concentrations of 17βâ€estradiol, testosterone, and 11â€ketotestosterone in white sucker: Implications and recommendations. Environmental Toxicology and Chemistry, 2014, 33, 847-857.	4.3	18
75	An inexpensive, temporally integrated system for monitoring occurrence and biological effects of aquatic contaminants in the field. Environmental Toxicology and Chemistry, 2014, 33, 1584-1595.	4.3	25
76	Integrated approach to explore the mechanisms of aromatase inhibition and recovery in fathead minnows (Pimephales promelas). General and Comparative Endocrinology, 2014, 203, 193-202.	1.8	17
77	Investigating Alternatives to the fish earlyâ€life stage test: A strategy for discovering and annotating adverse outcome pathways for early fish development. Environmental Toxicology and Chemistry, 2014, 33, 158-169.	4.3	90
78	Leveraging existing data for prioritization of the ecological risks of human and veterinary pharmaceuticals to aquatic organisms. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20140022.	4.0	44
79	Development of an adverse outcome pathway for acetylcholinesterase inhibition leading to acute mortality. Environmental Toxicology and Chemistry, 2014, 33, 2157-2169.	4.3	89
80	Using Transcriptomic Tools to Evaluate Biological Effects Across Effluent Gradients at a Diverse Set of Study Sites in Minnesota, USA. Environmental Science & Technology, 2014, 48, 140127154618004.	10.0	23
81	Transcriptomic Effects-Based Monitoring for Endocrine Active Chemicals: Assessing Relative Contribution of Treated Wastewater to Downstream Pollution. Environmental Science & Technology, 2014, 48, 140110103918000.	10.0	27
82	Natural Variation in Fish Transcriptomes: Comparative Analysis of the Fathead Minnow (Pimephales) Tj ETQq0 0 () rgBT /Ov 2.5	verlock 10 Tf 14
83	Molecular target sequence similarity as a basis for species extrapolation to assess the ecological risk of chemicals with known modes of action. Aquatic Toxicology, 2013, 144-145, 141-154.	4.0	87
84	Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks. Environmental Toxicology and Chemistry, 2013, 32, 32-48.	4.3	278
85	First in a special series: Analysis of the impact of papers published in <i>Environmental Toxicology and Chemistry</i> over the past 30 years—an overview and coming attractions. Environmental Toxicology and Chemistry, 2013, 32, 1-6.	4.3	10
86	Effects of the insecticide fipronil on reproductive endocrinology in the fathead minnow. Environmental Toxicology and Chemistry, 2013, 32, 1828-1834.	4.3	23
87	CROSSâ€SPECIES CONSERVATION OF ENDOCRINE PATHWAYS: A CRITICAL ANALYSIS OF TIER 1 FISH AND RAT SCREENING ASSAYS WITH 12 MODEL CHEMICALS. Environmental Toxicology and Chemistry, 2013, 32, 1084-1087.	4.3	57
88	Reproductive Physiology in Eastern Snapping Turtles (Chelydra serpentina) Exposed to Runoff from a Concentrated Animal Feeding Operation. Journal of Wildlife Diseases, 2013, 49, 996-999.	0.8	1
89	Current Perspectives on the Use of Alternative Species in Human Health and Ecological Hazard Assessments. Environmental Health Perspectives, 2013, 121, 1002-1010.	6.0	87
90	Environmental Reviews and Case Studies: Biological Effects–Based Tools for Monitoring Impacted Surface Waters in the Great Lakes: A Multiagency Program in Support of the Great Lakes Restoration Initiative. Environmental Practice, 2013, 15, 409-426.	0.3	41

#	Article	IF	CITATIONS
91	Propiconazole Inhibits Steroidogenesis and Reproduction in the Fathead Minnow (Pimephales) Tj ETQq1 1 0.7843	14 rgBT / 3.1	Overlock 1
92	Crossâ€species sensitivity to a novel androgen receptor agonist of potential environmental concern, spironolactone. Environmental Toxicology and Chemistry, 2013, 32, 2528-2541.	4.3	39
93	Development of methods to detect occurrence and effects of endocrineâ€disrupting chemicals: Fueling a fundamental shift in regulatory ecotoxicology. Environmental Toxicology and Chemistry, 2013, 32, 2661-2662.	4.3	4
94	Developing Predictive Approaches to Characterize Adaptive Responses of the Reproductive Endocrine Axis to Aromatase Inhibition: I. Data Generation in a Small Fish Model. Toxicological Sciences, 2013, 133, 225-233.	3.1	30
95	Assessment of status of white sucker (<i>Catostomus commersoni</i>) populations exposed to bleached kraft pulp mill effluent. Environmental Toxicology and Chemistry, 2013, 32, 1592-1603.	4.3	13
96	Toward sustainable environmental quality: A call to prioritize global research needs. Integrated Environmental Assessment and Management, 2013, 9, 179-180.	2.9	13
97	Developing Predictive Approaches to Characterize Adaptive Responses of the Reproductive Endocrine Axis to Aromatase Inhibition: II. Computational Modeling. Toxicological Sciences, 2013, 133, 234-247.	3.1	19
98	Pharmaceuticals and Personal Care Products in the Environment: What Are the Big Questions?. Environmental Health Perspectives, 2012, 120, 1221-1229.	6.0	1,033
99	Short-Term Study Investigating the Estrogenic Potency of Diethylstilbesterol in the Fathead Minnow (Pimephales promelas). Environmental Science & Technology, 2012, 46, 7826-7835.	10.0	23
100	A time-course analysis of effects of the steroidogenesis inhibitor ketoconazole on components of the hypothalamic-pituitary-gonadal axis of fathead minnows. Aquatic Toxicology, 2012, 114-115, 88-95.	4.0	42
101	A graphical systems model and tissue-specific functional gene sets to aid transcriptomic analysis of chemical impacts on the female teleost reproductive axis. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2012, 746, 151-162.	1.7	20
102	Effects of gemfibrozil on lipid metabolism, steroidogenesis, and reproduction in the fathead minnow (<i>Pimephales promelas</i>). Environmental Toxicology and Chemistry, 2012, 31, 2615-2624.	4.3	38
103	Ecotoxicogenomics to Support Ecological Risk Assessment: A Case Study with Bisphenol A in Fish. Environmental Science & Technology, 2012, 46, 51-59.	10.0	95
104	Fishy Aroma of Social Status: Urinary Chemo-Signalling of Territoriality in Male Fathead Minnows (Pimephales promelas). PLoS ONE, 2012, 7, e46579.	2.5	27
105	Effects of a glucocorticoid receptor agonist, dexamethasone, on fathead minnow reproduction, growth, and development. Environmental Toxicology and Chemistry, 2012, 31, 611-622.	4.3	97
106	A Method for the Determination of Genetic Sex in the Fathead Minnow, Pimephales promelas, To Support Testing of Endocrine-Active Chemicals. Environmental Science & Technology, 2011, 45, 3090-3095.	10.0	19
107	Proteomic analysis of zebrafish brain tissue following exposure to the pesticide prochloraz. Aquatic Toxicology, 2011, 105, 618-628.	4.0	25
108	A computational model for asynchronous oocyte growth dynamics in a batch-spawning fish. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68, 1528-1538.	1.4	18

#	Article	IF	CITATIONS
109	Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads. Aquatic Toxicology, 2011, 101, 447-458.	4.0	50
110	Effects of a short-term exposure to the fungicide prochloraz on endocrine function and gene expression in female fathead minnows (Pimephales promelas). Aquatic Toxicology, 2011, 103, 170-178.	4.0	57
111	Transcriptional regulatory dynamics of the hypothalamic–pituitary–gonadal axis and its peripheral pathways as impacted by the 3-beta HSD inhibitor trilostane in zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 2011, 74, 1461-1470.	6.0	14
112	A computational model of the hypothalamic - pituitary - gonadal axis in female fathead minnows (Pimephales promelas) exposed to 17α-ethynylestradiol and 17β-trenbolone. BMC Systems Biology, 2011, 5, 63.	3.0	34
113	Adverse outcome pathways and ecological risk assessment: Bridging to populationâ€level effects. Environmental Toxicology and Chemistry, 2011, 30, 64-76.	4.3	195
114	Screening complex effluents for estrogenic activity with the T47Dâ€KBluc cell bioassay: Assay optimization and comparison with in vivo responses in fish. Environmental Toxicology and Chemistry, 2011, 30, 439-445.	4.3	31
115	Use of gene expression, biochemical and metabolite profiles to enhance exposure and effects assessment of the model androgen 17l2â€trenbolone in fish. Environmental Toxicology and Chemistry, 2011, 30, 319-329.	4.3	44
116	Temporal evaluation of effects of a model 3βâ€hydroxysteroid dehydrogenase inhibitor on endocrine function in the fathead minnow. Environmental Toxicology and Chemistry, 2011, 30, 2094-2102.	4.3	14
117	Characterization of the androgenâ€sensitive MDAâ€kb2 cell line for assessing complex environmental mixtures. Environmental Toxicology and Chemistry, 2010, 29, 1367-1376.	4.3	30
118	Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. Environmental Toxicology and Chemistry, 2010, 29, 730-741.	4.3	2,072
119	Multiâ€criteria decision analysis of test endpoints for detecting the effects of endocrine active substances in fish full life cycle tests. Integrated Environmental Assessment and Management, 2010, 6, 378-389.	2.9	12
120	Impacts of an Anti-Androgen and an Androgen/Anti-Androgen Mixture on the Metabolite Profile of Male Fathead Minnow Urine. Environmental Science & Technology, 2010, 44, 6881-6886.	10.0	43
121	I. Effects of a dopamine receptor antagonist on fathead minnow, Pimephales promelas, reproduction. Ecotoxicology and Environmental Safety, 2010, 73, 472-477.	6.0	17
122	ll: Effects of a dopamine receptor antagonist on fathead minnow dominance behavior and ovarian gene expression in the fathead minnow and zebrafish. Ecotoxicology and Environmental Safety, 2010, 73, 478-485.	6.0	15
123	A transcriptomics-based biological framework for studying mechanisms of endocrine disruption in small fish species. Aquatic Toxicology, 2010, 98, 230-244.	4.0	35
124	Influence of ovarian stage on transcript profiles in fathead minnow (Pimephales promelas) ovary tissue. Aquatic Toxicology, 2010, 98, 354-366.	4.0	40
125	Use of chemical mixtures to differentiate mechanisms of endocrine action in a small fish model. Aquatic Toxicology, 2010, 99, 389-396.	4.0	43
126	Direct Effects, Compensation, and Recovery in Female Fathead Minnows Exposed to a Model Aromatase Inhibitor. Environmental Health Perspectives, 2009, 117, 624-631.	6.0	90

#	Article	IF	CITATIONS
127	Dynamic Nature of Alterations in the Endocrine System of Fathead Minnows Exposed to the Fungicide Prochloraz. Toxicological Sciences, 2009, 112, 344-353.	3.1	72
128	A Computational Model of the Hypothalamic-Pituitary-Gonadal Axis in Male Fathead Minnows Exposed to 17α-Ethinylestradiol and 17β-Estradiol. Toxicological Sciences, 2009, 109, 180-192.	3.1	37
129	Profiling lipid metabolites yields unique information on sex- and time-dependent responses of fathead minnows (PimephalesÂpromelas) exposed to 17α-ethynylestradiol. Metabolomics, 2009, 5, 22-32.	3.0	60
130	Expression Signatures for a Model Androgen and Antiandrogen in the Fathead Minnow (<i>Pimephales) Tj ETQqO</i>	0.0 rgBT / 10.0	Overlock 10
131	Quantitative Proteomic Profiles of Androgen Receptor Signaling in the Liver of Fathead Minnows (<i>Pimephales promelas</i>). Journal of Proteome Research, 2009, 8, 2186-2200.	3.7	49
132	Hypoxia alters gene expression in the gonads of zebrafish (Danio rerio)â~†â~†â~†â—Š. Aquatic Toxicology, 2009, 9 258-272.	⁵ , _{4.0}	68
133	Endocrine disrupting chemicals in fish: Developing exposure indicators and predictive models of effects based on mechanism of action. Aquatic Toxicology, 2009, 92, 168-178.	4.0	234
134	DOING MORE WITH LESS: EFFECTIVE RESEARCH AND PEER REVIEW. Integrated Environmental Assessment and Management, 2009, 5, 712.	2.9	1
135	Perturbation of gene expression and steroidogenesis with in vitro exposure of fathead minnow ovaries to ketoconazole. Marine Environmental Research, 2008, 66, 113-115.	2.5	9
136	Relationship of plasma sex steroid concentrations in female fathead minnows to reproductive success and population status. Aquatic Toxicology, 2008, 88, 69-74.	4.0	57
137	Of Mice and Men (and Mosquitofish): Antiandrogens and Androgens in the Environment. BioScience, 2008, 58, 1037-1050.	4.9	27
138	Temporal Variation in the Estrogenicity of a Sewage Treatment Plant Effluent and Its Biological Significance. Environmental Science & Technology, 2008, 42, 3421-3427.	10.0	54
139	Fifteen Years after "Wingspreadâ€â€"Environmental Endocrine Disrupters and Human and Wildlife Health: Where We are Today and Where We Need to Go. Toxicological Sciences, 2008, 105, 235-259.	3.1	408
140	Effects of a 3β-Hydroxysteroid Dehydrogenase Inhibitor, Trilostane, on the Fathead Minnow Reproductive Axis. Toxicological Sciences, 2008, 104, 113-123.	3.1	58
141	Computational Toxicology—A State of the Science Mini Review. Toxicological Sciences, 2008, 103, 14-27.	3.1	152
142	Sensitivity of Fetal Rat Testicular Steroidogenesis to Maternal Prochloraz Exposure and the Underlying Mechanism of Inhibition. Toxicological Sciences, 2007, 97, 512-519.	3.1	49
143	Transcription of Key Genes Regulating Gonadal Steroidogenesis in Control and Ketoconazole- or Vinclozolin-Exposed Fathead Minnows. Toxicological Sciences, 2007, 98, 395-407.	3.1	83
144	Comparison of fathead minnow ovary explant and H295R cell-based steroidogenesis assays for identifying endocrine-active chemicals. Ecotoxicology and Environmental Safety, 2007, 68, 20-32.	6.0	66

#	Article	IF	CITATIONS
145	What is normal? A characterization of the values and variability in reproductive endpoints of the fathead minnow, Pimephales promelas. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2007, 146, 348-356.	2.6	35
146	Repeating History: Pharmaceuticals in the Environment. Environmental Science & Technology, 2007, 41, 8211-8217.	10.0	337
147	A Graphical Systems Model to Facilitate Hypothesis-Driven Ecotoxicogenomics Research on the Teleost Brainâ^'Pituitaryâ^'Gonadal Axis. Environmental Science & Technology, 2007, 41, 321-330.	10.0	112
148	LINKAGE OF BIOCHEMICAL RESPONSES TO POPULATION-LEVEL EFFECTS: A CASE STUDY WITH VITELLOGENIN IN THE FATHEAD MINNOW (PIMEPHALES PROMELAS). Environmental Toxicology and Chemistry, 2007, 26, 521.	4.3	198
149	Ketoconazole in the fathead minnow (<i>Pimephales promelas</i>): Reproductive toxicity and biological compensation. Environmental Toxicology and Chemistry, 2007, 26, 1214-1223.	4.3	118
150	Ambient Solar UV Radiation Causes Mortality in Larvae of Three Species of Rana Under Controlled Exposure Conditionsâ€Â¶. Photochemistry and Photobiology, 2007, 74, 261-268.	2.5	5
151	Mechanistic Computational Model of Ovarian Steroidogenesis to Predict Biochemical Responses to Endocrine Active Compounds. Annals of Biomedical Engineering, 2007, 35, 970-981.	2.5	27
152	Toxicogenomics in Regulatory Ecotoxicology. Environmental Science & Technology, 2006, 40, 4055-4065.	10.0	247
153	Effects of the Feedlot Contaminant 17α-Trenbolone on Reproductive Endocrinology of the Fathead Minnow. Environmental Science & Technology, 2006, 40, 3112-3117.	10.0	117
154	Relationship between brain and ovary aromatase activity and isoform-specific aromatase mRNA expression in the fathead minnow (Pimephales promelas). Aquatic Toxicology, 2006, 76, 353-368.	4.0	83
155	The fathead minnow in aquatic toxicology: Past, present and future. Aquatic Toxicology, 2006, 78, 91-102.	4.0	237
156	Expression of two vitellogenin genes (vg1 and vg3) in fathead minnow (Pimephales promelas) liver in response to exposure to steroidal estrogens and androgens. Ecotoxicology and Environmental Safety, 2006, 63, 337-342.	6.0	72
157	Evaluation of a commercial kit for measuring vitellogenin in the fathead minnow (Pimephales) Tj ETQq1 1 0.7843	14 rgBT /(6.0	Dverlock 10 1
158	Adverse effects of environmental antiandrogens and androgens on reproductive development in mammals1. Journal of Developmental and Physical Disabilities, 2006, 29, 96-104.	3.6	282
159	EVALUATION OF THE METHOXYTRIAZINE HERBICIDE PROMETON USING A SHORT-TERM FATHEAD MINNOW REPRODUCTION TEST AND A SUITE OF IN VITRO BIOASSAYS. Environmental Toxicology and Chemistry, 2006, 25, 2143.	4.3	17
160	COMPARISON OF RELATIVE BINDING AFFINITIES OF ENDOCRINE ACTIVE COMPOUNDS TO FATHEAD MINNOW AND RAINBOW TROUT ESTROGEN RECEPTORS. Environmental Toxicology and Chemistry, 2005, 24, 2948.	4.3	62
161	REPRODUCTIVE AND DEVELOPMENTAL TOXICITY AND BIOCONCENTRATION OF PERFLUOROOCTANESULFONATE IN A PARTIAL LIFE-CYCLE TEST WITH THE FATHEAD MINNOW (PIMEPHALES) TJ E	ETQ8 11C).7 £% 314 rgB
162	Ecotoxicogenomics: linkages between exposure and effects in assessing risks of aquatic contaminants to fish. Reproductive Toxicology, 2005, 19, 321-326.	2.9	99

#	Article	IF	CITATIONS
163	Effects of Two Fungicides with Multiple Modes of Action on Reproductive Endocrine Function in the Fathead Minnow (Pimephales promelas). Toxicological Sciences, 2005, 86, 300-308.	3.1	187
164	Gonadal histology and characteristic histopathology associated with endocrine disruption in the adult fathead minnow (Pimephales promelas). Environmental Toxicology and Pharmacology, 2005, 19, 85-98.	4.0	100
165	PARTIAL LIFE-CYCLE TOXICITY AND BIOCONCENTRATION MODELING OF PERFLUOROOCTANESULFONATE IN THE NORTHERN LEOPARD FROG (RANA PIPIENS). Environmental Toxicology and Chemistry, 2004, 23, 2745.	4.3	68
166	Cloning and In Vitro Expression and Characterization of the Androgen Receptor and Isolation of Estrogen Receptor α from the Fathead Minnow (Pimephales promelas). Environmental Science & Technology, 2004, 38, 6314-6321.	10.0	52
167	Evaluation of the Model Anti-androgen Flutamide for Assessing the Mechanistic Basis of Responses to an Androgen in the Fathead Minnow (Pimephales promelas). Environmental Science & Technology, 2004, 38, 6322-6327.	10.0	73
168	Small Fish Models for Identifying and Assessing the Effects of Endocrine-disrupting Chemicals. ILAR Journal, 2004, 45, 469-483.	1.8	217
169	Ecotoxicology—a multidisciplinary, problem-driven science. Environmental Science & Technology, 2004, 38, 446A-447A.	10.0	6
170	Assessment of environmental stressors potentially responsible for malformations in North American anuran amphibians. Ecotoxicology and Environmental Safety, 2004, 58, 7-16.	6.0	48
171	Modeling impacts on populations: fathead minnow (Pimephales promelas) exposure to the endocrine disruptor 17l²-trenbolone as a case study. Ecotoxicology and Environmental Safety, 2004, 59, 1-9.	6.0	104
172	Mechanistic basis for estrogenic effects in fathead minnow (Pimephales promelas) following exposure to the androgen 17α-methyltestosterone: conversion of 17α-methyltestosterone to 17α-methylestradiol. Aquatic Toxicology, 2004, 66, 15-23.	4.0	90
173	Characterization of responses to the antiandrogen flutamide in a short-term reproduction assay with the fathead minnow. Aquatic Toxicology, 2004, 70, 99-110.	4.0	123
174	QUANTITATIVE STRUCTURE–ACTIVITY RELATIONSHIP MODELS FOR PREDICTION OF ESTROGEN RECEPTOR BINDING AFFINITY OF STRUCTURALLY DIVERSE CHEMICALS. Environmental Toxicology and Chemistry, 2003, 22, 1844.	4.3	49
175	Induction of an estrogenâ€responsive reporter gene in rainbow trout hepatoma cells (RTH 149) at 11 or 18°C. Environmental Toxicology and Chemistry, 2003, 22, 866-871.	4.3	12
176	Effects of the androgenic growth promoter 17â€Î²â€ŧrenbolone on fecundity and reproductive endocrinology of the fathead minnow. Environmental Toxicology and Chemistry, 2003, 22, 1350-1360.	4.3	352
177	Developmental toxicity of methoprene and several degradation products in Xenopus laevis. Aquatic Toxicology, 2003, 64, 97-105.	4.0	30
178	Uptake and Metabolism of All-trans Retinoic Acid by Three Native North American Ranids. Toxicological Sciences, 2003, 74, 147-156.	3.1	4
179	Comparing the Effects of Stage and Duration of Retinoic Acid Exposure on Amphibian Limb Development: Chronic Exposure Results in Mortality, Not Limb Malformations. Toxicological Sciences, 2003, 74, 139-146.	3.1	20
180	EFFECTS OF THE ANDROGENIC GROWTH PROMOTER 17-Î ² -TRENBOLONE ON FECUNDITY AND REPRODUCTIVE ENDOCRINOLOGY OF THE FATHEAD MINNOW. Environmental Toxicology and Chemistry, 2003, 22, 1350.	4.3	13

#	Article	IF	CITATIONS
181	Effects of the androgenic growth promoter 17-beta-trenbolone on fecundity and reproductive endocrinology of the fathead minnow. Environmental Toxicology and Chemistry, 2003, 22, 1350-60.	4.3	57
182	Assessment of the Risk of Solar Ultraviolet Radiation to Amphibians. III. Prediction of Impacts in Selected Northern Midwestern Wetlands. Environmental Science & Technology, 2002, 36, 2866-2874.	10.0	46
183	Assessment of the Risk of Solar Ultraviolet Radiation to Amphibians. I. Dose-Dependent Induction of Hindlimb Malformations in the Northern Leopard Frog (Rana pipiens). Environmental Science & Technology, 2002, 36, 2853-2858.	10.0	65
184	Evaluation of the Aromatase Inhibitor Fadrozole in a Short-Term Reproduction Assay with the Fathead Minnow (Pimephales promelas). Toxicological Sciences, 2002, 67, 121-130.	3.1	249
185	Evaluation of androstenedione as an androgenic component of river water downstream of a pulp and paper mill effluent. Environmental Toxicology and Chemistry, 2002, 21, 1973-1976.	4.3	74
186	EVALUATION OF ANDROSTENEDIONE AS AN ANDROGENIC COMPONENT OF RIVER WATER DOWNSTREAM OF A PULP AND PAPER MILL EFFLUENT. Environmental Toxicology and Chemistry, 2002, 21, 1973.	4.3	5
187	Aspects of basic reproductive biology and endocrinology in the fathead minnow (Pimephales) Tj ETQq1 1 0.78431 127-141.	4 rgBT /O 2.6	verlock 10 T 117
188	Ambient Solar UV Radiation Causes Mortality in Larvae of Three Species of Rana Under Controlled Exposure Conditionsâ€Â¶. Photochemistry and Photobiology, 2001, 74, 261.	2.5	41
189	Description and evaluation of a shortâ€ŧerm reproduction test with the fathead minnow (<i>Pimephales) Tj ETQq2</i>	1 1 0.7843 4.3	314 rgBT /O
190	Factors affecting reproduction and the importance of adult size on reproductive output of the midge <i>Chironomus tentans</i> . Environmental Toxicology and Chemistry, 2001, 20, 1296-1303.	4.3	37
191	An assessment of the toxicity of phthalate esters to freshwater benthos. 1. Aqueous exposures. Environmental Toxicology and Chemistry, 2001, 20, 1798-1804.	4.3	49
192	An assessment of the toxicity of phthalate esters to freshwater benthos. 2. Sediment exposures. Environmental Toxicology and Chemistry, 2001, 20, 1805-1815.	4.3	25
193	Fathead minnow vitellogenin: Complementary DNA sequence and messenger RNA and protein expression after 17βâ€estradiol treatment. Environmental Toxicology and Chemistry, 2000, 19, 972-981.	4.3	133
194	Effect of irradiance spectra on the photoinduced toxicity of three polycyclic aromatic hydrocarbons. Environmental Toxicology and Chemistry, 2000, 19, 1389-1396.	4.3	45
195	Effects of water quality on development of <i>Xenopus laevis</i> : A frog embryo teratogenesis assay— <i>Xenopus</i> assessment of surface water associated with malformations in native anurans. Environmental Toxicology and Chemistry, 2000, 19, 2114-2121.	4.3	22
196	Effects of laboratory ultraviolet radiation and natural sunlight on survival and development of <i>Rana pipiens</i> . Canadian Journal of Zoology, 2000, 78, 1092-1100.	1.0	31
197	FATHEAD MINNOW VITELLOGENIN: COMPLEMENTARY DNA SEQUENCE AND MESSENGER RNA AND PROTEIN EXPRESSION AFTER 1712-ESTRADIOL TREATMENT. Environmental Toxicology and Chemistry, 2000, 19, 972.	4.3	3
198	EFFECTS OF WATER QUALITY ON DEVELOPMENT OF XENOPUS LAEVIS: A FROG EMBRYO TERATOGENESIS ASSAY—XENOPUS ASSESSMENT OF SURFACE WATER ASSOCIATED WITH MALFORMATIONS IN NATIVE ANURANS. Environmental Toxicology and Chemistry, 2000, 19, 2114.	4.3	15

#	Article	IF	CITATIONS
199	Additive Toxicity of Binary Mixtures of Phototoxic Polycyclic Aromatic Hydrocarbons to the OligochaeteLumbriculus variegatus. Toxicology and Applied Pharmacology, 1999, 154, 97-105.	2.8	41
200	Use of nonpolar resin for reduction of fluoranthene bioavailability in sediment. Environmental Toxicology and Chemistry, 1999, 18, 201-206.	4.3	35
201	Persistence and distribution of 4â€nonylphenol following repeated application to littoral enclosures. Environmental Toxicology and Chemistry, 1999, 18, 363-375.	4.3	49
202	New developments in a hazard identification algorithm for hormone receptor ligands. QSAR and Combinatorial Science, 1999, 18, 139-153.	1.2	40
203	USE OF NONPOLAR RESIN FOR REDUCTION OF FLUORANTHENE BIOAVAILABILITY IN SEDIMENT. Environmental Toxicology and Chemistry, 1999, 18, 201.	4.3	5
204	IN SITU BIOASSAY CHAMBER FOR ASSESSMENT OF SEDIMENT TOXICITY AND BIOACCUMULATION USING BENTHIC INVERTEBRATES. Environmental Toxicology and Chemistry, 1999, 18, 2325.	4.3	50
205	The role of ligand flexibility in predicting biological activity: Structure–activity relationships for aryl hydrocarbon, estrogen, and androgen receptor binding affinity. Environmental Toxicology and Chemistry, 1998, 17, 15-25.	4.3	27
206	Bioaccumulation of polychlorinated biphenyls from sediments to aquatic insects and tree swallow eggs and nestlings in Saginaw Bay, Michigan, USA. Environmental Toxicology and Chemistry, 1998, 17, 484-492.	4.3	41
207	Application of toxicityâ€based fractionation techniques and structureâ€activity relationship models for the identification of phototoxic polycyclic aromatic hydrocarbons in sediment pore water. Environmental Toxicology and Chemistry, 1998, 17, 1021-1033.	4.3	43
208	Effects of ultraviolet light and methoprene on survival and development of <i>Rana pipiens</i> . Environmental Toxicology and Chemistry, 1998, 17, 2530-2542.	4.3	103
209	A Computationally-Based Hazard Identification Algorithm That Incorporates Ligand Flexibility. 1. Identification of Potential Androgen Receptor Ligands. Environmental Science & Technology, 1997, 31, 3702-3711.	10.0	67
210	Toxicity of 4-Nonylphenol in a Life-Cycle Test with the MidgeChironomus tentans. Ecotoxicology and Environmental Safety, 1997, 38, 155-160.	6.0	48
211	Title is missing!. Ecotoxicology, 1997, 6, 101-125.	2.4	19
212	<i>Chironomus tentans</i> life ycle test: Design and evaluation for use in assessing toxicity of contaminated sediments. Environmental Toxicology and Chemistry, 1997, 16, 1165-1176.	4.3	93
213	Toxicity and bioaccumulation of 2,3,7,8â€ŧetrachlorodibenzoâ€ <i>p</i> â€dioxin in longâ€ŧerm tests with the freshwater benthic invertebrates <i>Chironomus tentans</i> and <i>Lumbriculus variegatus</i> . Environmental Toxicology and Chemistry, 1997, 16, 1287-1294.	4.3	43
214	The effect of gut contents on dry weight estimates of <i>Chironomus tentans</i> larvae: Implications for interpreting toxicity in freshwater sediment toxicity tests. Environmental Toxicology and Chemistry, 1997, 16, 1721-1726.	4.3	20
215	Application of Toxicity Identification Evaluation Techniques to Pore Water from Buffalo River Sediments. Journal of Great Lakes Research, 1996, 22, 534-544.	1.9	11
216	Retrospective analysis of the ecological risk of contaminant mixtures in aquatic sediments. Human and Ecological Risk Assessment (HERA), 1996, 2, 434-440.	3.4	11

#	Article	IF	CITATIONS
217	Interlaboratory study of precision: <i>Hyalella azteca</i> and <i>Chironomus tentans</i> freshwater sediment toxicity assays. Environmental Toxicology and Chemistry, 1996, 15, 1335-1343.	4.3	48
218	Modified diffusion method for analysis of acid volatile sulfides and simultaneously extracted metals in freshwater sediment. Environmental Toxicology and Chemistry, 1996, 15, 1479-1481.	4.3	61
219	Technical basis and proposal for deriving sediment quality criteria for metals. Environmental Toxicology and Chemistry, 1996, 15, 2056-2066.	4.3	364
220	Predicting chronic toxicity of sediments spiked with zinc: An evaluation of the acidâ€volatile sulfide model using a life•ycle test with the midge <i>Chironomus tentans</i> . Environmental Toxicology and Chemistry, 1996, 15, 2102-2112.	4.3	69
221	Effects of acidâ€volatile sulfide on zinc bioavailability and toxicity to benthic macroinvertebrates: A spikedâ€sediment field experiment. Environmental Toxicology and Chemistry, 1996, 15, 2113-2125.	4.3	57
222	Evaluation of metal/acidâ€volatile sulfide relationships in the prediction of metal bioaccumulation by benthic macroinvertebrates. Environmental Toxicology and Chemistry, 1996, 15, 2138-2146.	4.3	101
223	A field investigation of the relationship between zinc and acid volatile sulfide concentrations in freshwater sediments. Journal of Aquatic Ecosystem Health, 1996, 5, 255-264.	0.4	18
224	A Perspective on the Risk Assessment Process for Endocrine-Disruptive Effects on Wildlife and Human Health*. Risk Analysis, 1996, 16, 731-739.	2.7	67
225	TECHNICAL BASIS AND PROPOSAL FOR DERIVING SEDIMENT QUALITY CRITERIA FOR METALS. Environmental Toxicology and Chemistry, 1996, 15, 2056.	4.3	22
226	Toxicity and bioaccumulation of sedimentâ€associated contaminants using freshwater invertebrates: A review of methods and applications. Environmental Toxicology and Chemistry, 1995, 14, 1885-1894.	4.3	132
227	Bioenergetics-Based Model for Accumulation of Polychlorinated Biphenyls by Nestling Tree Swallows, Tachycineta bicolor. Environmental Science & Technology, 1995, 29, 604-612.	10.0	57
228	Effects of light intensity on the phototoxicity of fluoranthene to a benthic macroinvertebrate. Environmental Science & Technology, 1995, 29, 2828-2833.	10.0	106
229	QSAR Evaluation of .alphaTerthienyl Phototoxicity. Environmental Science & Technology, 1995, 29, 1267-1272.	10.0	33
230	TOXICITY AND BIOACCUMULATION OF SEDIMENT-ASSOCIATED CONTAMINANTS USING FRESHWATER INVERTEBRATES: A REVIEW OF METHODS AND APPLICATIONS. Environmental Toxicology and Chemistry, 1995, 14, 1885.	4.3	9
231	Assessing potential bioavailability of metals in sediments: A proposed approach. Environmental Management, 1994, 18, 331-337.	2.7	85
232	Measures of reproductive success and polychlorinated biphenyl residues in eggs and chicks of Forster's terns on Green Bay, Lake Michigan, Wisconsin—1988. Archives of Environmental Contamination and Toxicology, 1993, 25, 304-314.	4.1	50
233	Development and evaluation of test methods for benthic invertebrates and sediments: Effects of flow rate and feeding on water quality and exposure conditions. Archives of Environmental Contamination and Toxicology, 1993, 25, 12.	4.1	102
234	Uptake of planar polychlorinated biphenyls and 2,3,7,8-substituted polychlorinated dibenzofurans and dibenzo-p-dioxins by birds nesting in the lower fox river and Green Bay, Wisconsin, USA. Archives of Environmental Contamination and Toxicology, 1993, 24, 332-344.	4.1	94

#	Article	IF	CITATIONS
235	2,3,7,8-Tetrachlorodibenzo-p-dioxin equivalents in tissues of birds at Green Bay, Wisconsin, USA. Archives of Environmental Contamination and Toxicology, 1993, 24, 345-354.	4.1	58
236	A sediment testing intermittent renewal system for the automated renewal of overlying water in toxicity tests with contaminated sediments. Water Research, 1993, 27, 1403-1412.	11.3	65
237	Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environmental Science & Technology, 1992, 26, 96-101.	10.0	585
238	Integrated assessment of contaminated sediments in the lower Fox River and Green Bay, Wisconsin. Ecotoxicology and Environmental Safety, 1992, 23, 46-63.	6.0	61
239	Bioaccumulation of PCBs from Sediments by Oligochaetes and Fishes: Comparison of Laboratory and Field Studies. Canadian Journal of Fisheries and Aquatic Sciences, 1992, 49, 2080-2085.	1.4	132
240	Prediction of Concentrations of 2,3,7,8-Tetrachlorodibenzo-p-dioxin Equivalents from Total Concentrations of Polychlorinated Biphenyls in Fish Fillets. Environmental Science & Technology, 1992, 26, 1151-1159.	10.0	56
241	Use of toxicity identification evaluation techniques to identify dredged material disposal options: A proposed approach. Environmental Management, 1992, 16, 1-6.	2.7	45
242	Characterization of the H4IIE rat hepatoma cell bioassay as a tool for assessing toxic potency of planar halogenated hydrocarbons in environmental samples. Environmental Science & Technology, 1991, 25, 87-92.	10.0	232
243	Piperonyl butoxide as a tool in aquatic toxicological research with organophosphate insecticides. Ecotoxicology and Environmental Safety, 1991, 21, 266-274.	6.0	75
244	H4IIE rat hepatoma cell bioassay-derived 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents in colonial fish-eating waterbird eggs from the Great Lakes. Archives of Environmental Contamination and Toxicology, 1991, 21, 91-101.	4.1	102
245	Bioassay-Derived 2,3,7,8-Tetrachlorodibenzo- <i>p</i> dioxin Equivalents in PCB-Containing Extracts from the Flesh and Eggs of Lake Michigan Chinook Salmon (<i>Oncorhynchus tshawytscha</i>) and Possible Implications for Reproduction. Canadian Journal of Fisheries and Aquatic Sciences, 1991, 48, 1685-1690.	1.4	77
246	Bioassay Directed Characterization of the Acute Aquatic Toxicity of a Creosote Leachate. Hazardous Waste and Hazardous Materials, 1990, 7, 283-291.	0.4	18
247	Maternal transfer of bioactive polychlorinated aromatic hydrocarbons in spawning chinook salmon (Oncorhynchus tschawytscha). Marine Environmental Research, 1989, 28, 231-234.	2.5	19
248	Planar chlorinated hydrocarbons (PCHs) in colonial fish-eating waterbird eggs from the Great Lakes. Marine Environmental Research, 1989, 28, 505-508.	2.5	15
249	Identifying toxicants: NETAC's toxicity-based approach. Environmental Science & Technology, 1989, 23, 1438-1443.	10.0	68
250	Dietary Lipid as a Factor Modulating Xenobiotic Metabolism in Channel Catfish (Ictalurus punctatus). Canadian Journal of Fisheries and Aquatic Sciences, 1989, 46, 1141-1146.	1.4	26
251	Effects of commercial versus synthetic diets on hepatic xenobiotic-metabolizing enzymes in channel catfish. Marine Environmental Research, 1988, 24, 41-44.	2.5	4
252	Effects of Diet on PCB-Induced Changes in Xenobiotic Metabolism in the Liver of Channel Catfish (Ictalurus punctatus). Canadian Journal of Fisheries and Aquatic Sciences, 1988, 45, 132-137.	1.4	27

#	Article	IF	CITATIONS
253	Metabolism of alkoxyphenoxazones by channel catfish liver microsomes: Effects of phenobarbital, Aroclor 1254 and 3-methylcholanthrene. Biochemical Pharmacology, 1987, 36, 1379-1381.	4.4	31
254	Effects of Aroclor 1254 on cytochrome P-450-dependent monooxygenase, glutathione S-transferase, and UDP-glucuronosyltransferase activities in channel catfish liver. Aquatic Toxicology, 1986, 9, 91-103.	4.0	53
255	Assessing Risks from Photoactivated Toxicity of PAHs to Aquatic Organisms. , 0, , 275-296.		19