M Maral Mouradian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7151225/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Therapeutics in the Pipeline Targeting <i>α</i> -Synuclein for Parkinson's Disease. Pharmacological Reviews, 2022, 74, 207-237.	7.1	39
2	Tumor suppressor PALB2 maintains redox and mitochondrial homeostasis in the brain and cooperates with ATG7/autophagy to suppress neurodegeneration. PLoS Genetics, 2022, 18, e1010138.	1.5	2
3	Striatal ΔFosB gene suppression inhibits the development of abnormal involuntary movements induced by L-Dopa in rats. Gene Therapy, 2021, , .	2.3	2
4	MicroRNA-7 Protects Against Neurodegeneration Induced byÂα-Synuclein PreformedÂFibrils in the Mouse Brain. Neurotherapeutics, 2021, 18, 2529-2540.	2.1	10
5	Silica-coated magnetic-nanoparticle-induced cytotoxicity is reduced in microglia by glutathione and citrate identified using integrated omics. Particle and Fibre Toxicology, 2021, 18, 42.	2.8	10
6	Apoptosis signal regulating kinase 1 deletion mitigates α-synuclein pre-formed fibril propagation in mice. Neurobiology of Aging, 2020, 85, 49-57.	1.5	9
7	Translation of the intrinsically disordered protein α-synuclein is inhibited by a small molecule targeting its structured mRNA. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1457-1467.	3.3	69
8	Transglutaminase 2 Depletion Attenuates α-Synuclein Mediated Toxicity in Mice. Neuroscience, 2020, 441, 58-64.	1.1	14
9	Role of striatal ΔFosB in <scp>l</scp> -Dopa–induced dyskinesias of parkinsonian nonhuman primates. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18664-18672.	3.3	22
10	Nucleic Acid–Based Therapeutics for Parkinson's Disease. Neurotherapeutics, 2019, 16, 287-298.	2.1	45
11	Increased Dynamics of α-Synuclein Fibrils by β-Synuclein Leads to Reduced Seeding and Cytotoxicity. Scientific Reports, 2019, 9, 17579.	1.6	17
12	Protein Phosphatase 2A and Its Methylation Modulating Enzymes LCMT-1 and PME-1 Are Dysregulated in Tauopathies of Progressive Supranuclear Palsy and Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2018, 77, 139-148.	0.9	39
13	Cytoprotective mechanisms of DJ-1 against oxidative stress through modulating ERK1/2 and ASK1 signal transduction. Redox Biology, 2018, 14, 211-217.	3.9	89
14	Synergistic neuroprotection by coffee components eicosanoyl-5-hydroxytryptamide and caffeine in models of Parkinson's disease and DLB. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12053-E12062.	3.3	54
15	The Parkinson's disease gene product DJ-1 modulates miR-221 to promote neuronal survival against oxidative stress. Redox Biology, 2018, 19, 62-73.	3.9	68
16	Letter From the Editor-in-Chief: Journal Transition in the Digital Age. Neurotherapeutics, 2017, 14, 831.	2.1	1
17	Regulation of Signal Transduction by DJ-1. Advances in Experimental Medicine and Biology, 2017, 1037, 97-131.	0.8	38
18	Dysregulation of protein phosphatase 2A in parkinson disease and dementia with lewy bodies. Annals of Clinical and Translational Neurology, 2016, 3, 769-780.	1.7	52

#	Article	IF	CITATIONS
19	Silica-coated magnetic nanoparticles impair proteasome activity and increase the formation of cytoplasmic inclusion bodies in vitro. Scientific Reports, 2016, 6, 29095.	1.6	30
20	Dual κâ€agonist/μâ€antagonist opioid receptor modulation reduces levodopaâ€induced dyskinesia and corrects dysregulated striatal changes in the nonhuman primate model of <scp>P</scp> arkinson disease. Annals of Neurology, 2015, 77, 930-941.	2.8	45
21	Rare genetic variants support mitochondrial dysfunction in Lewy body disorders. Neurology, 2015, 85, 2002-2003.	1.5	0
22	Inhibition of miRâ€34b and miRâ€34c enhances αâ€synuclein expression in Parkinson's disease. FEBS Letters, 2015, 589, 319-325.	1.3	134
23	MMP-9 expression is increased in B lymphocytes during multiple sclerosis exacerbation and is regulated by microRNA-320a. Journal of Neuroimmunology, 2015, 278, 185-189.	1.1	56
24	MicroRNA-7 Promotes Glycolysis to Protect against 1-Methyl-4-phenylpyridinium-induced Cell Death. Journal of Biological Chemistry, 2015, 290, 12425-12434.	1.6	53
25	Apoptosis signal-regulating kinase 1 modulates the phenotype of α-synuclein transgenic mice. Neurobiology of Aging, 2015, 36, 519-526.	1.5	23
26	MicroRNA-7 Protects against 1-Methyl-4-Phenylpyridinium-Induced Cell Death by Targeting RelA. Journal of Neuroscience, 2014, 34, 12725-12737.	1.7	85
27	Letter from the Editor-in-Chief: Transitions. Neurotherapeutics, 2014, 11, 2.	2.1	6
28	Predicting the development of levodopa-induced dyskinesias. Neurology, 2014, 82, 1574-1575.	1.5	6
29	Transglutaminase 2 exacerbates αâ€synuclein toxicity in mice and yeast. FASEB Journal, 2014, 28, 4280-4291.	0.2	29
30	Neuroprotective and Anti-inflammatory Properties of a Coffee Component in the MPTP Model of Parkinson's Disease. Neurotherapeutics, 2013, 10, 143-153.	2.1	65
31	The Role of Oxidative Stress in Parkinson's Disease. Journal of Parkinson's Disease, 2013, 3, 461-491.	1.5	1,218
32	α-Synuclein phosphorylation as a therapeutic target in Parkinson's disease. Reviews in the Neurosciences, 2012, 23, 191-8.	1.4	48
33	Targeting phosphatases as the next generation of disease modifying therapeutics for Parkinson's disease. Neurochemistry International, 2012, 61, 899-906.	1.9	27
34	DJ-1 induces thioredoxin 1 expression through the Nrf2 pathway. Human Molecular Genetics, 2012, 21, 3013-3024.	1.4	169
35	Apoptosis Signal-Regulating Kinase 1 Mediates MPTP Toxicity and Regulates Glial Activation. PLoS ONE, 2012, 7, e29935.	1.1	57
36	MicroRNAs in Parkinson's disease. Neurobiology of Disease, 2012, 46, 279-284.	2.1	142

#	Article	IF	CITATIONS
37	MicroRNAs in neurodegenerative diseases and their therapeutic potential. , 2012, 133, 142-150.		186
38	Transglutaminase 2: Biology, Relevance to Neurodegenerative Diseases and Therapeutic Implications. , 2012, 133, 392-410.		54
39	Proteasome inhibition induces α-synuclein SUMOylation and aggregate formation. Journal of the Neurological Sciences, 2011, 307, 157-161.	0.3	82
40	Human Polycomb protein 2 promotes α-synuclein aggregate formation through covalent SUMOylation. Brain Research, 2011, 1381, 78-89.	1.1	55
41	Enhanced Phosphatase Activity Attenuates α-Synucleinopathy in a Mouse Model. Journal of Neuroscience, 2011, 31, 6963-6971.	1.7	163
42	Striatal Overexpression of ΔFosB Reproduces Chronic Levodopa-Induced Involuntary Movements. Journal of Neuroscience, 2010, 30, 7335-7343.	1.7	86
43	MicroRNAs in neurodegenerative disorders. Cell Cycle, 2010, 9, 1717-1721.	1.3	21
44	DJ-1 protects against oxidative damage by regulating the thioredoxin/ASK1 complex. Neuroscience Research, 2010, 67, 203-208.	1.0	77
45	Repression of α-synuclein expression and toxicity by microRNA-7. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13052-13057.	3.3	575
46	Mitochondrial localization of DJâ€1 leads to enhanced neuroprotection. Journal of Neuroscience Research, 2009, 87, 123-129.	1.3	270
47	Activation of the GDNF-inducible transcription factor (GIF) gene promoter by glucocorticoid and progesterone. Journal of Steroid Biochemistry and Molecular Biology, 2009, 115, 30-35.	1.2	4
48	Advances in Gene Therapy for Movement Disorders. Neurotherapeutics, 2008, 5, 260-269.	2.1	29
49	Localization of CKII β subunits in Lewy bodies of Parkinson's disease. Journal of the Neurological Sciences, 2008, 266, 9-12.	0.3	38
50	Transcriptional auto-regulation of the dopamine receptor regulating factor (DRRF) gene. Molecular and Cellular Endocrinology, 2008, 289, 23-28.	1.6	4
51	Neurodegeneration and neuroprotection in multiple sclerosis and other neurodegenerative diseases. Journal of Neuroimmunology, 2006, 176, 198-215.	1.1	80
52	The Impact of Inclusion Formation on Cell Survival. , 2006, , 57-67.		0
53	Interaction of DJ-1 with Daxx inhibits apoptosis signal-regulating kinase 1 activity and cell death. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9691-9696.	3.3	299
54	Delivery of transgenically modified adult bone marrow cells to the rodent central nervous system. Expert Opinion on Biological Therapy, 2004, 4, 669-675.	1.4	2

#	Article	IF	CITATIONS
55	Aggresomes Formed by α-Synuclein and Synphilin-1 Are Cytoprotective. Journal of Biological Chemistry, 2004, 279, 4625-4631.	1.6	356
56	Casein Kinase II-mediated Phosphorylation Regulates α-Synuclein/Synphilin-1 Interaction and Inclusion Body Formation. Journal of Biological Chemistry, 2004, 279, 6834-6839.	1.6	87
57	Alpha-synuclein in Parkinson's disease: Light from two new angles. Annals of Neurology, 2004, 55, 153-156.	2.8	32
58	Brain-derived neurotrophic factor (BDNF) gene delivery into the CNS using bone marrow cells as vehicles in mice. Neuroscience Letters, 2004, 356, 215-219.	1.0	14
59	Complications of a trophic xenotransplant approach in parkinsonian monkeys. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2003, 27, 607-612.	2.5	13
60	Cell cycle aberrations by α-synuclein over-expression and cyclin B immunoreactivity in Lewy bodies. Neurobiology of Aging, 2003, 24, 687-696.	1.5	72
61	Genomic organization and promoter characterization of the murine dopamine receptor regulating factor (DRRF) gene. Gene, 2003, 304, 193-199.	1.0	7
62	Tissue transglutaminase-induced aggregation of Â-synuclein: Implications for Lewy body formation in Parkinson's disease and dementia with Lewy bodies. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2047-2052.	3.3	237
63	Parkin Accumulation in Aggresomes Due to Proteasome Impairment. Journal of Biological Chemistry, 2002, 277, 47870-47877.	1.6	132
64	Recent advances in the genetics and pathogenesis of Parkinson disease. Neurology, 2002, 58, 179-185.	1.5	230
65	Sp1 and TAFII130 Transcriptional Activity Disrupted in Early Huntington's Disease. Science, 2002, 296, 2238-2243.	6.0	638
66	IFN-βGene Transfer into the Central Nervous System Using Bone Marrow Cells as a Delivery System. Journal of Interferon and Cytokine Research, 2002, 22, 783-791.	0.5	14
67	Developmental expression of the zinc finger transcription factor DRRF (dopamine receptor regulating) Tj ETQq1 1	0.784314 1.7	1 rgBT /Overi
68	Interaction between Mutant Ataxin-1 and PQBP-1 Affects Transcription and Cell Death. Neuron, 2002, 34, 701-713.	3.8	182
69	Human α-Synuclein over-expression increases intracellular reactive oxygen species levels and susceptibility to dopamine. Neuroscience Letters, 2002, 320, 146-150.	1.0	229
70	Synphilin-1 degradation by the ubiquitin-proteasome pathway and effects on cell survival. Journal of Neurochemistry, 2002, 83, 346-352.	2.1	31
71	BDNF synthesis in spiral ganglion neurons is constitutive and CREB-dependent. Hearing Research, 2001, 156, 53-68.	0.9	67
72	Protection of nigral neurons by GDNF-engineered marrow cell transplantation. Neuroscience Research, 2001, 40, 315-323.	1.0	69

5

#	Article	IF	CITATIONS
73	Continuous Transdermal Dopaminergic Stimulation in Advanced Parkinson's Disease. Clinical Neuropharmacology, 2001, 24, 163-169.	0.2	89
74	Characterization of the $5\hat{a}\in^2$ flanking region of the rat D3 dopamine receptor gene. Journal of Neurochemistry, 2001, 76, 1736-1744.	2.1	17
75	Apoptotic signaling in dopamine-induced cell death: the role of oxidative stress, p38 mitogen-activated protein kinase, cytochrome c and caspases. Journal of Neurochemistry, 2001, 78, 374-383.	2.1	194
76	Dopamine receptor regulating factor, DRRF: A zinc finger transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7558-7563.	3.3	59
77	ZIC2 and Sp3 Repress Sp1-induced Activation of the HumanD Dopamine Receptor Gene. Journal of Biological Chemistry, 2000, 275, 38863-38869.	1.6	55
78	Three-amino acid Extension Loop Homeodomain Proteins Meis2 and TGIF Differentially Regulate Transcription. Journal of Biological Chemistry, 2000, 275, 20734-20741.	1.6	75
79	PQBP-1/Npw38, a Nuclear Protein Binding to the Polyglutamine Tract, Interacts with U5-15kD/dim1p via the Carboxyl-Terminal Domain. Biochemical and Biophysical Research Communications, 2000, 273, 592-595.	1.0	78
80	Enhanced vulnerability to oxidative stress by $\hat{I}\pm$ -synuclein mutations and C-terminal truncation. Neuroscience, 2000, 97, 279-284.	1.1	189
81	PQBP-1, a novel polyglutamine tract-binding protein, inhibits transcription activation by Brn-2 and affects cell survival. Human Molecular Genetics, 1999, 8, 977-987.	1.4	159
82	Degradation of α-Synuclein by Proteasome. Journal of Biological Chemistry, 1999, 274, 33855-33858.	1.6	376
83	Regulation of striatal dopamine receptors by estrogen. Synapse, 1999, 34, 222-227.	0.6	95
84	In vivo regulation of glial cell line-derived neurotrophic factor-inducible transcription factor by kainic acid. Neuroscience, 1999, 94, 629-636.	1.1	3
85	Up-regulation of D1A dopamine receptor gene transcription by estrogen. Molecular and Cellular Endocrinology, 1999, 156, 151-157.	1.6	57
86	Neural cell line-specific regulatory DNA cassettes harboring the murine D1A dopamine receptor promoter. Neuroscience Research, 1999, 34, 225-234.	1.0	11
87	Regulation of striatal dopamine receptors by corticosterone: an in vivo and in vitro study. Molecular Brain Research, 1999, 69, 281-285.	2.5	25
88	AP-2β represses D1A dopamine receptor gene transcription in Neuro2a cells. Molecular Brain Research, 1999, 74, 208-216.	2.5	20
89	Targeting of marrow-derived astrocytes to the ischemic brain. NeuroReport, 1999, 10, 1289-1292.	0.6	135
90	Modulation of nigrostriatal dopaminergic transmission by antisense oligodeoxynucleotide against brain-derived neurotrophic factor. Neurochemical Research, 1998, 23, 525-532.	1.6	16

#	Article	IF	CITATIONS
91	Polar Amino Acid-Rich Sequences Bind to Polyglutamine Tracts. Biochemical and Biophysical Research Communications, 1998, 253, 16-20.	1.0	39
92	Sp Family Transcription Factors Regulate Expression of Rat D2Dopamine Receptor Gene. DNA and Cell Biology, 1998, 17, 471-479.	0.9	36
93	Tissue-Specific Promoter Usage in the D _{1A} Dopamine Receptor Gene in Brain and Kidney. DNA and Cell Biology, 1997, 16, 1267-1275.	0.9	15
94	Interaction of nuclear factors from young and old rat brain regions with regulatory sequences of the D2 dopamine receptor gene promoter. Molecular Brain Research, 1997, 44, 113-124.	2.5	6
95	Localization of putative calcium-responsive regions in the rat BDNF gene. Molecular Brain Research, 1997, 50, 154-164.	2.5	18
96	Cloning and Characterization of Murine Glial Cell-Derived Neurotrophic Factor Inducible Transcription Factor (MGIF). Journal of Neuroscience, 1997, 17, 8657-8666.	1.7	59
97	Modulation of levodopa-induced motor response complications by NMDA antagonists in Parkinson's disease. Neuroscience and Biobehavioral Reviews, 1997, 21, 447-453.	2.9	85
98	Interactions between D1 and D2 dopamine receptor family agonists and antagonists: the effects of chronic exposure on behavior and receptor binding in rats and their clinical implications. Journal of Neural Transmission, 1997, 104, 341-362.	1.4	57
99	Dopamine D _{1A} Receptors and Renin Release in Rat Juxtaglomerular Cells. Hypertension, 1997, 29, 962-968.	1.3	44
100	POU Transcription Factors Differentially Regulate the D1ADopamine Receptor Gene in Cultured Cells. Biochemical and Biophysical Research Communications, 1996, 222, 736-741.	1.0	4
101	Up-regulation of D3 dopamine receptor mRNA by neuroleptics. , 1996, 23, 232-235.		20
102	Two Distinct Promoters Drive Transcription of the Human D1A Dopamine Receptor Gene. Journal of Biological Chemistry, 1996, 271, 25292-25299.	1.6	37
103	Dopamine D1A Receptor Regulation of Phospholipase C Isoform. Journal of Biological Chemistry, 1996, 271, 19503-19508.	1.6	62
104	Fluctuations in plasma levodopa and motor responses with liquid and tablet levodopa/carbidopa. Movement Disorders, 1994, 9, 463-465.	2.2	50
105	Metabolic effects of scopolamine and physostigmine in human brain measured by positron emission tomography. Journal of the Neurological Sciences, 1994, 123, 44-51.	0.3	25
106	Alternate 5′ exons in the rat brain-derived neurotrophic factor gene: differential patterns of expression across brain regions. Molecular Brain Research, 1994, 26, 225-232.	2.5	65
107	Comparison of cholinergic drug effects on regional brain glucose consumption in rats and humans by means of autoradiography and positron emission tomography. Brain Research, 1994, 635, 196-202.	1.1	29
108	Protection Against Acute MPTP-Induced Dopamine Depletion in Mice by Adenosine A1Agonist. Journal of Neurochemistry, 1993, 60, 768-771.	2.1	31

#	Article	IF	CITATIONS
109	Characterization of a corticotropin releasing hormone responsive region in the murine proopiomelanocortin gene. Molecular and Cellular Endocrinology, 1993, 97, 165-171.	1.6	3
110	Analysis of the promoter region of the rat D2 dopamine receptor gene. Biochemistry, 1992, 31, 8389-8396.	1.2	72
111	Continuous lisuride effects on central dopaminergic mechanisms in Parkinson's disease. Annals of Neurology, 1992, 32, 776-781.	2.8	67
112	Modification of central dopaminergic mechanisms by continuous levodopa therapy for advanced Parkinson's disease. Annals of Neurology, 1990, 27, 18-23.	2.8	259
113	Decrease in a proenkephalin peptide in cerebrospinal fluid in Huntington's disease and progressive supranuclear palsy. Brain Research, 1989, 479, 397-401.	1.1	12
114	Dopamine D-1 receptor agonist stimulation of prolactin secretion in man. Journal of Neural Transmission, 1988, 71, 159-163.	1.4	20
115	[3H]MK-801 binding in Alzheimer's disease. Neuroscience Letters, 1988, 93, 225-230.	1.0	42
116	Selective D-1 dopamine receptor agonist treatment of parkinson's disease. Journal of Neural Transmission, 1987, 68, 41-50.	1.4	126
117	Spinal fluid CRF reduction in Alzheimer's disease. Neuropeptides, 1986, 8, 393-400.	0.9	51