
Baris Yuce

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7151103/publications.pdf Version: 2024-02-01

RADIS YUCE

#	Article	IF	CITATIONS
1	Computational intelligence techniques for HVAC systems: A review. Building Simulation, 2016, 9, 359-398.	3.0	167
2	Honey Bees Inspired Optimization Method: The Bees Algorithm. Insects, 2013, 4, 646-662.	1.0	143
3	ANN–GA smart appliance scheduling for optimised energy management in the domestic sector. Energy and Buildings, 2016, 111, 311-325.	3.1	115
4	Utilizing artificial neural network to predict energy consumption and thermal comfort level: An indoor swimming pool case study. Energy and Buildings, 2014, 80, 45-56.	3.1	87
5	Usability evaluation of a web-based tool for supporting holistic building energy management. Automation in Construction, 2017, 84, 154-165.	4.8	70
6	High throughput computing based distributed genetic algorithm for building energy consumption optimization. Energy and Buildings, 2014, 76, 92-101.	3.1	61
7	A multi-objective supply chain optimisation using enhanced Bees Algorithm with adaptive neighbourhood search and site abandonment strategy. Swarm and Evolutionary Computation, 2014, 18, 71-82.	4.5	48
8	An ANN-GA Semantic Rule-Based System to Reduce the Gap Between Predicted and Actual Energy Consumption in Buildings. IEEE Transactions on Automation Science and Engineering, 2017, 14, 1351-1363.	3.4	45
9	A modular optimisation model for reducing energy consumption in large scale building facilities. Renewable and Sustainable Energy Reviews, 2014, 38, 990-1002.	8.2	40
10	A Multi-Objective Optimization for Supply Chain Network Using the Bees Algorithm. International Journal of Engineering Business Management, 2013, 5, 38.	2.1	35
11	Hybrid Genetic Bees Algorithm applied to single machine scheduling with earliness and tardiness penalties. Computers and Industrial Engineering, 2017, 113, 842-858.	3.4	35
12	A hybrid intelligent approach for supply chain management system. Journal of Intelligent Manufacturing, 2012, 23, 1237-1244.	4.4	30
13	A Smart Forecasting Approach to District Energy Management. Energies, 2017, 10, 1073.	1.6	22
14	Novel Genetic Bees Algorithm applied to single machine scheduling problem. , 2014, , .		21
15	Neural network design and feature selection using principal component analysis and Taguchi method for identifying wood veneer defects. Production and Manufacturing Research, 2014, 2, 291-308.	0.9	21
16	User Centered Neuro-Fuzzy Energy Management Through Semantic-Based Optimization. IEEE Transactions on Cybernetics, 2019, 49, 3278-3292.	6.2	18
17	An enhancement to the Bees Algorithm with slope angle computation and Hill Climbing Algorithm and its applications on scheduling and continuous-type optimisation problem. Production and Manufacturing Research, 2015, 3, 3-19.	0.9	15
18	A HPC based cloud model for real-time energy optimisation. Enterprise Information Systems, 2016, 10, 108-128.	3.3	12

BARIS YUCE

#	Article	IF	CITATIONS
19	Optimisation of the replenishment problem in the Fashion Retail Industry using Tabu-Bees algorithm. IFAC-PapersOnLine, 2016, 49, 1685-1690.	0.5	9
20	The Bees Algorithm and Its Applications. Advances in Computational Intelligence and Robotics Book Series, 2015, , 122-151.	0.4	9
21	An Intelligent Analytics System for Real-Time Catchment Regulation and Water Management. IEEE Transactions on Industrial Informatics, 2018, 14, 3970-3981.	7.2	7
22	Using the Variable Geometry in a Planar Inductor for an Optimised Performance. Electronics (Switzerland), 2021, 10, 721.	1.8	7
23	A System of Systems Approach to Supply Chain Design. Applied Mechanics and Materials, 0, 496-500, 2807-2814.	0.2	6
24	A Hybrid Approach using the Bees Algorithm and Fuzzy-AHP for Supplier Selection. Advances in Computer and Electrical Engineering Book Series, 2016, , 171-194.	0.2	4
25	Supply Chain Network Design Using an Enhanced Hybrid Swarm-Based Optimization Algorithm. Advances in Computational Intelligence and Robotics Book Series, 2016, , 95-112.	0.4	4
26	An ANN-Based Energy Forecasting Framework for the District Level Smart Grids. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2017, , 107-117.	0.2	2
27	Supply Chain Network Design Using an Enhanced Hybrid Swarm-Based Optimization Algorithm. , 2020, , 266-283.		1
28	Cognitive Based Decision Support for Water Management and Catchment Regulation. IFIP Advances in Information and Communication Technology, 2018, , 467-477.	0.5	0