
Fengzai Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7151052/publications.pdf Version: 2024-02-01

FENCZAL TANC

#	Article	IF	CITATIONS
1	Low-noise-figure and high-purity 10 vortex modes amplifier based on configurable pump modes. Optics Express, 2022, 30, 8248.	1.7	6
2	Broadband high-gain Yb: YAG crystal-derived silica fiber for low noise tunable single-frequency fiber laser. Optics Express, 2022, 30, 18692.	1.7	3
3	Spectroscopy of Pb/Bi co-doped silica optical fibers fabricated via atom layer deposition with modified chemical vapour deposition. Journal of Luminescence, 2021, 231, 117768.	1.5	10
4	Graphene oxide enhanced ionic liquid plasticisation of chitosan/alginate bionanocomposites. Carbohydrate Polymers, 2021, 253, 117231.	5.1	9
5	Influence of plasticiser type and nanoclay on the properties of chitosan-based materials. European Polymer Journal, 2021, 144, 110225.	2.6	28
6	Over 255  mW single-frequency fiber laser with high slope efficiency and power stability based on an ultrashort Yb-doped crystal-derived silica fiber. Photonics Research, 2021, 9, 649.	3.4	36
7	Effect of Surface Oxides on the Melting and Solidification of 316L Stainless Steel Powder for Additive Manufacturing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 4518-4532.	1.1	11
8	Structure and properties of thermomechanically processed silk peptide and nanoclay filled chitosan. Nanocomposites, 2020, 6, 125-136.	2.2	10
9	lonic Liquid (1-Ethyl-3-methylimidazolium Acetate) Plasticization of Chitosan-Based Bionanocomposites. ACS Omega, 2020, 5, 19070-19081.	1.6	14
10	Unexpected Plasticization Effects on the Structure and Properties of Polyelectrolyte Complexed Chitosan/Alginate Materials. ACS Applied Polymer Materials, 2020, 2, 2957-2966.	2.0	11
11	Glycerol plasticisation of chitosan/carboxymethyl cellulose composites: Role of interactions in determining structure and properties. International Journal of Biological Macromolecules, 2020, 163, 683-693.	3.6	19
12	Thermomechanical-induced polyelectrolyte complexation between chitosan and carboxymethyl cellulose enabling unexpected hydrolytic stability. Composites Science and Technology, 2020, 189, 108031.	3.8	25
13	Reevaluating the evidence for a Hadean-Eoarchean dynamo. Science Advances, 2020, 6, eaav9634.	4.7	18
14	Structure and properties of thermomechanically processed chitosan/carboxymethyl cellulose/graphene oxide polyelectrolyte complexed bionanocomposites. International Journal of Biological Macromolecules, 2020, 158, 420-429.	3.6	24
15	Exceeding 50% slope efficiency DBR fiber laser based on a Yb-doped crystal-derived silica fiber with high gain per unit length. Optics Express, 2020, 28, 23771.	1.7	12
16	Insight into the impact of atomic- and nano-scale indium distributions on the optical properties of InGaN/GaN quantum well structures grown on m-plane freestanding GaN substrates. Journal of Applied Physics, 2019, 125, 225704.	1.1	5
17	Effect of Fe Intermetallics on Microstructure and Properties of Al-7Si Alloys. Jom, 2019, 71, 4362-4369.	0.9	27
18	Secondary magnetite in ancient zircon precludes analysis of a Hadean geodynamo. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 407-412.	3.3	24

Fengzai Tang

#	Article	IF	CITATIONS
19	Nanoscale structural and chemical analysis of F-implanted enhancement-mode InAlN/GaN heterostructure field effect transistors. Journal of Applied Physics, 2018, 123, 024902.	1.1	2
20	Nanoscopic insights into the effect of silicon on core-shell InGaN/GaN nanorods: Luminescence, composition, and structure. Journal of Applied Physics, 2018, 123, 045103.	1.1	10
21	Nitride Single Photon Sources. , 2018, , .		Ο
22	The atomic structure of polar and non-polar InGaN quantum wells and the green gap problem. Ultramicroscopy, 2017, 176, 93-98.	0.8	24
23	Validity of Vegard's rule for Al1â^'xInxN (0.08  <  x  < â€‱0.28) thin films gr Physics D: Applied Physics, 2017, 50, 205107.	own on Ga	aN templates 10
24	Electronic Structure and Band Alignment at the NiO and SrTiO ₃ p–n Heterojunctions. ACS Applied Materials & Interfaces, 2017, 9, 26549-26555.	4.0	65
25	Application of Atom Probe Tomography to Nitride Semiconductors. Microscopy and Microanalysis, 2017, 23, 666-667.	0.2	0
26	Ultrafast, Polarized, Single-Photon Emission from m-Plane InGaN Quantum Dots on GaN Nanowires. Nano Letters, 2016, 16, 7779-7785.	4.5	26
27	Theoretical and experimental analysis of the photoluminescence and photoluminescence excitation spectroscopy spectra of <i>m</i> -plane InGaN/GaN quantum wells. Applied Physics Letters, 2016, 109, .	1.5	7
28	The microstructure of non-polar a-plane (112Â ⁻ 0) InGaN quantum wells. Journal of Applied Physics, 2016, 119, .	1.1	22
29	Local carrier recombination and associated dynamics in <i>m</i> -plane InGaN/GaN quantum wells probed by picosecond cathodoluminescence. Applied Physics Letters, 2016, 109, .	1.5	9
30	Self-assembled Multilayers of Silica Nanospheres for Defect Reduction in Non- and Semipolar Gallium Nitride Epitaxial Layers. Crystal Growth and Design, 2016, 16, 1010-1016.	1.4	4
31	Structural and optical properties of (112ì2) InGaN quantum wells compared to (0001) and (112ì0). Semiconductor Science and Technology, 2016, 31, 085007.	1.0	5
32	A study of the optical and polarisation properties of InGaN/GaN multiple quantum wells grown on a-plane and m-plane GaN substrates. Science and Technology of Advanced Materials, 2016, 17, 736-743.	2.8	5
33	Practical Issues for Atom Probe Tomography Analysis of III-Nitride Semiconductor Materials. Microscopy and Microanalysis, 2015, 21, 544-556.	0.2	25
34	Optical studies of nonâ€polar mâ€plane () InGaN/GaN multiâ€quantum wells grown on freestanding bulk GaN. Physica Status Solidi (B): Basic Research, 2015, 252, 965-970.	0.7	14
35	Microstructural dependency of optical properties of <i>m</i> -plane InGaN multiple quantum wells grown on 2° misoriented bulk GaN substrates. Applied Physics Letters, 2015, 107, .	1.5	5
36	Indium clustering in <i>a</i> -plane InGaN quantum wells as evidenced by atom probe tomography. Applied Physics Letters, 2015, 106, .	1.5	46

Fengzai Tang

#	Article	IF	CITATIONS
37	On the generation of surface depressions in polishing polycrystalline diamond compacts. Journal Physics D: Applied Physics, 2014, 47, 125301.	1.3	4
38	Subsurface nanocracking in monocrystalline Si (001) induced by nanoscratching. Engineering Fracture Mechanics, 2014, 124-125, 262-271.	2.0	25
39	Analysis of polished polycrystalline diamond using dual beam focused ion beam microscopy. Philosophical Magazine, 2012, 92, 1680-1690.	0.7	13
40	Surface integrity of PCD composites generated by dynamic friction polishing: Effect of processing conditions. Diamond and Related Materials, 2012, 26, 25-31.	1.8	17
41	Observations of grain boundary impurities in nanocrystalline Al and their influence on microstructural stability and mechanical behaviour. Acta Materialia, 2012, 60, 1038-1047.	3.8	122
42	Atom probe crystallography: Characterization of grain boundary orientation relationships in nanocrystalline aluminium. Ultramicroscopy, 2011, 111, 493-499.	0.8	51
43	Optimization of pulsed laser atom probe (PLAP) for the analysis of nanocomposite Ti–Si–N films. Ultramicroscopy, 2010, 110, 836-843.	0.8	60
44	Microstructural investigation of Ti–Si–N hard coatings. Scripta Materialia, 2010, 63, 192-195.	2.6	27
45	Thin film composites of nanocrystalline ZrO2 and diamond-like carbon: Synthesis, structural properties and bone cell proliferation. Acta Biomaterialia, 2010, 6, 4154-4160.	4.1	12
46	Thin-film nanocomposites of diamond-like carbon and titanium oxide; Osteoblast adhesion and surface properties. Diamond and Related Materials, 2010, 19, 329-335.	1.8	30
47	Multiple solution-doping in optical fibre fabrication I – Aluminium doping. Journal of Non-Crystalline Solids, 2008, 354, 927-937.	1.5	12
48	Multiple solution-doping in optical fibre fabrication II – Rare-earth and aluminium co-doping. Journal of Non-Crystalline Solids, 2008, 354, 1582-1590.	1.5	11
49	Microscale Inhomogeneities in Aluminum Solution-Doping of Silica-Based Optical Fibers. Journal of the American Ceramic Society, 2007, 90, 23-28.	1.9	10
50	Nanoscale characterization of silica soots and aluminium solution doping in optical fibre fabrication. Journal of Non-Crystalline Solids, 2006, 352, 3799-3807.	1.5	27