David A Sinclair

List of Publications by Citations

Source: https://exaly.com/author-pdf/7150744/david-a-sinclair-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

49,961 218 90 202 h-index g-index citations papers 56,120 218 14.8 7.71 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
202	Resveratrol improves health and survival of mice on a high-calorie diet. <i>Nature</i> , 2006 , 444, 337-42	50.4	3520
201	Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. <i>Nature</i> , 2003 , 425, 191	-6 50.4	3055
200	Therapeutic potential of resveratrol: the in vivo evidence. <i>Nature Reviews Drug Discovery</i> , 2006 , 5, 493-	·5 % 4.1	2806
199	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445	-5 40 .2	2783
198	Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. <i>Science</i> , 2004 , 303, 2011-5	33.3	2544
197	Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. <i>Science</i> , 2004 , 305, 390-2	33.3	1610
196	Sirtuin activators mimic caloric restriction and delay ageing in metazoans. <i>Nature</i> , 2004 , 430, 686-9	50.4	1574
195	Mammalian sirtuins: biological insights and disease relevance. <i>Annual Review of Pathology: Mechanisms of Disease</i> , 2010 , 5, 253-95	34	1472
194	Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. <i>Nature</i> , 2007 , 450, 712-6	50.4	1387
193	Sirtuins in mammals: insights into their biological function. <i>Biochemical Journal</i> , 2007 , 404, 1-13	3.8	1314
192	Extrachromosomal rDNA circlesa cause of aging in yeast. <i>Cell</i> , 1997 , 91, 1033-42	56.2	1185
191	SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. <i>Cell Metabolism</i> , 2012 , 15, 675-90	24.6	1032
190	Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. <i>Cell Metabolism</i> , 2008 , 8, 157-68	24.6	949
189	Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. <i>Cell</i> , 2013 , 155, 1624-38	56.2	879
188	SIRT1 deacetylase protects against neurodegeneration in models for Alzheimerß disease and amyotrophic lateral sclerosis. <i>EMBO Journal</i> , 2007 , 26, 3169-79	13	865
187	Metformin improves healthspan and lifespan in mice. <i>Nature Communications</i> , 2013 , 4, 2192	17.4	822
186	Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. <i>Cell</i> , 2007 , 130, 1095-107	56.2	754

(1999-2002)

185	Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. <i>Journal of Biological Chemistry</i> , 2002 , 277, 45099-107	5.4	754
184	Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2011 , 66, 191-201	6.4	648
183	SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. <i>Cell</i> , 2008 , 135, 907-18	56.2	617
182	The intersection between aging and cardiovascular disease. <i>Circulation Research</i> , 2012 , 110, 1097-108	15.7	595
181	Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. <i>Nature</i> , 2003 , 423, 181-5	50.4	595
180	The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. <i>Cell Metabolism</i> , 2014 , 19, 418-30	24.6	572
179	Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework. <i>Toxicology and Applied Pharmacology</i> , 2007 , 222, 122-8	4.6	512
178	Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. <i>Molecular Cell</i> , 2004 , 13, 627-38	17.6	503
177	Evidence for a common mechanism of SIRT1 regulation by allosteric activators. <i>Science</i> , 2013 , 339, 1216	5 -9 3.3	467
176	The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. <i>PLoS ONE</i> , 2008 , 3, e2020	3.7	461
175	Toward a unified theory of caloric restriction and longevity regulation. <i>Mechanisms of Ageing and Development</i> , 2005 , 126, 987-1002	5.6	450
174	Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. <i>Physiological Reviews</i> , 2012 , 92, 1479-57	1 4 7.9	417
173	Small molecule SIRT1 activators for the treatment of aging and age-related diseases. <i>Trends in Pharmacological Sciences</i> , 2014 , 35, 146-54	13.2	412
172	Slowing ageing by design: the rise of NAD and sirtuin-activating compounds. <i>Nature Reviews Molecular Cell Biology</i> , 2016 , 17, 679-690	48.7	410
171	Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. <i>Aging</i> , 2010 , 2, 914-23	5.6	397
170	Interventions to Slow Aging in Humans: Are We Ready?. Aging Cell, 2015, 14, 497-510	9.9	373
169	Why does COVID-19 disproportionately affect older people?. <i>Aging</i> , 2020 , 12, 9959-9981	5.6	370
168	Molecular biology of aging. <i>Cell</i> , 1999 , 96, 291-302	56.2	366

167	SIRT1 is essential for normal cognitive function and synaptic plasticity. <i>Journal of Neuroscience</i> , 2010 , 30, 9695-707	6.6	365
166	Therapeutic Potential of NAD-Boosting Molecules: The In Vivo Evidence. Cell Metabolism, 2018, 27, 529	- 54 76	332
165	Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. <i>Science</i> , 1997 , 277, 1313-6	33.3	331
164	Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. <i>Cell</i> , 1997 , 89, 381-91	56.2	325
163	MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. <i>Cell</i> , 1999 , 97, 609-20	56.2	288
162	The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. <i>Cell Reports</i> , 2014 , 6, 836-43	10.6	275
161	NAD Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair. <i>Cell Metabolism</i> , 2016 , 24, 566-581	24.6	273
160	Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. <i>European Heart Journal</i> , 2015 , 36, 3404-12	9.5	264
159	MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae. <i>PLoS Biology</i> , 2007 , 5, e261	9.7	246
158	Effects of Sex, Strain, and Energy Intake on Hallmarks of Aging in Mice. <i>Cell Metabolism</i> , 2016 , 23, 1093-	1214182	245
157	Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. <i>Journal of Biological Chemistry</i> , 2002 , 277, 18881-90	5.4	234
156	Xenohormesis: sensing the chemical cues of other species. <i>Cell</i> , 2008 , 133, 387-91	56.2	221
155	SRT1720 improves survival and healthspan of obese mice. <i>Scientific Reports</i> , 2011 , 1, 70	4.9	215
154	The role of nuclear architecture in genomic instability and ageing. <i>Nature Reviews Molecular Cell Biology</i> , 2007 , 8, 692-702	48.7	208
153	Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. <i>Diabetes</i> , 2013 , 62, 1084-93	0.9	207
152	Impairment of an Endothelial NAD-HS Signaling Network Is a Reversible Cause of Vascular Aging. <i>Cell</i> , 2018 , 173, 74-89.e20	56.2	205
151	HST2 mediates SIR2-independent life-span extension by calorie restriction. <i>Science</i> , 2005 , 309, 1861-4	33.3	195
150	Sirtuin activators and inhibitors: Promises, achievements, and challenges. <i>Pharmacology & Therapeutics</i> , 2018 , 188, 140-154	13.9	186

(1999-2004)

149	Small molecules that regulate lifespan: evidence for xenohormesis. <i>Molecular Microbiology</i> , 2004 , 53, 1003-9	4.1	183
148	Longevity regulation in Saccharomyces cerevisiae: linking metabolism, genome stability, and heterochromatin. <i>Microbiology and Molecular Biology Reviews</i> , 2003 , 67, 376-99, table of contents	13.2	181
147	When stem cells grow old: phenotypes and mechanisms of stem cell aging. <i>Development (Cambridge)</i> , 2016 , 143, 3-14	6.6	180
146	NAD in Brain Aging and Neurodegenerative Disorders. <i>Cell Metabolism</i> , 2019 , 30, 630-655	24.6	178
145	Small-molecule allosteric activators of sirtuins. <i>Annual Review of Pharmacology and Toxicology</i> , 2014 , 54, 363-80	17.9	171
144	The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity. <i>FASEB Journal</i> , 2007 , 21, 3629-39	0.9	170
143	Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. <i>Nature Communications</i> , 2015 , 6, 6263	17.4	169
142	Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide. <i>Nature Chemical Biology</i> , 2013 , 9, 693-700	11.7	159
141	SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass. <i>Aging Cell</i> , 2014 , 13, 787-96	9.9	158
140	Nicotinamide Improves Aspects of Healthspan, but Not Lifespan, in Mice. <i>Cell Metabolism</i> , 2018 , 27, 667	7- :6 : 7 .6.e	4152
140	Nicotinamide Improves Aspects of Healthspan, but Not Lifespan, in Mice. <i>Cell Metabolism</i> , 2018 , 27, 667. Sirtuins and NAD in the Development and Treatment of Metabolic and Cardiovascular Diseases. <i>Circulation Research</i> , 2018 , 123, 868-885	7-64.6.e	151
	Sirtuins and NAD in the Development and Treatment of Metabolic and Cardiovascular Diseases.		
139	Sirtuins and NAD in the Development and Treatment of Metabolic and Cardiovascular Diseases. Circulation Research, 2018, 123, 868-885 Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium-chain triglyceride oil on life span of genetically heterogeneous mice. Journals of Gerontology - Series A	15.7	151
139	Sirtuins and NAD in the Development and Treatment of Metabolic and Cardiovascular Diseases. Circulation Research, 2018, 123, 868-885 Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium-chain triglyceride oil on life span of genetically heterogeneous mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2013, 68, 6-16	15.7 6.4	151 149
139 138 137	Sirtuins and NAD in the Development and Treatment of Metabolic and Cardiovascular Diseases. <i>Circulation Research</i> , 2018 , 123, 868-885 Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium-chain triglyceride oil on life span of genetically heterogeneous mice. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2013 , 68, 6-16 SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. <i>EMBO Journal</i> , 2014 , 33, 1438-53 Design, synthesis, and biological evaluation of sirtinol analogues as class III histone/protein	15.7 6.4	151 149 148
139 138 137	Sirtuins and NAD in the Development and Treatment of Metabolic and Cardiovascular Diseases. <i>Circulation Research</i> , 2018 , 123, 868-885 Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium-chain triglyceride oil on life span of genetically heterogeneous mice. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2013 , 68, 6-16 SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. <i>EMBO Journal</i> , 2014 , 33, 1438-53 Design, synthesis, and biological evaluation of sirtinol analogues as class III histone/protein deacetylase (Sirtuin) inhibitors. <i>Journal of Medicinal Chemistry</i> , 2005 , 48, 7789-95 Amino Acid Restriction Triggers Angiogenesis via GCN2/ATF4 Regulation of VEGF and HS	15.7 6.4 13 8.3	151 149 148
139 138 137 136	Sirtuins and NAD in the Development and Treatment of Metabolic and Cardiovascular Diseases. <i>Circulation Research</i> , 2018 , 123, 868-885 Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium-chain triglyceride oil on life span of genetically heterogeneous mice. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2013 , 68, 6-16 SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. <i>EMBO Journal</i> , 2014 , 33, 1438-53 Design, synthesis, and biological evaluation of sirtinol analogues as class III histone/protein deacetylase (Sirtuin) inhibitors. <i>Journal of Medicinal Chemistry</i> , 2005 , 48, 7789-95 Amino Acid Restriction Triggers Angiogenesis via GCN2/ATF4 Regulation of VEGF and HS Production. <i>Cell</i> , 2018 , 173, 117-129.e14	15.7 6.4 13 8.3 56.2	151 149 148 147

131	Yeast life-span extension by calorie restriction is independent of NAD fluctuation. <i>Science</i> , 2003 , 302, 2124-2126	33.3	136
130	Inhibition of mammalian S6 kinase by resveratrol suppresses autophagy. <i>Aging</i> , 2009 , 1, 515-28	5.6	130
129	Germline energetics, aging, and female infertility. Cell Metabolism, 2013, 17, 838-850	24.6	128
128	SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance. <i>Cell Metabolism</i> , 2011 , 14, 301-	- 1:2 4.6	128
127	Reprogramming to recover youthful epigenetic information and restore vision. <i>Nature</i> , 2020 , 588, 124-	139.4	128
126	Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, E952-61	11.5	119
125	Aging-like phenotype and defective lineage specification in SIRT1-deleted hematopoietic stem and progenitor cells. <i>Stem Cell Reports</i> , 2014 , 3, 44-59	8	109
124	Berberine protects against high fat diet-induced dysfunction in muscle mitochondria by inducing SIRT1-dependent mitochondrial biogenesis. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2012 , 1822, 185-95	6.9	109
123	SIRT1 protects the heart from ER stress-induced cell death through eIF2Edeacetylation. <i>Cell Death and Differentiation</i> , 2017 , 24, 343-356	12.7	108
122	Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. <i>Redox Biology</i> , 2019 , 24, 101192	11.3	108
121	Targeting mitochondria for cardiovascular disorders: therapeutic potential and obstacles. <i>Nature Reviews Cardiology</i> , 2019 , 16, 33-55	14.8	104
120	A conserved NAD binding pocket that regulates protein-protein interactions during aging. <i>Science</i> , 2017 , 355, 1312-1317	33.3	102
119	Negative regulation of STAT3 protein-mediated cellular respiration by SIRT1 protein. <i>Journal of Biological Chemistry</i> , 2011 , 286, 19270-9	5.4	96
118	Molecular mechanisms of yeast aging. <i>Trends in Biochemical Sciences</i> , 1998 , 23, 131-4	10.3	96
117	Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3. <i>Protein Science</i> , 2009 , 18, 514-25	6.3	93
116	The Sirt1 activator SRT3025 provides atheroprotection in Apoe-/- mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression. <i>European Heart Journal</i> , 2015 , 36, 51-9	9.5	92
115	Unlocking the secrets of longevity genes. <i>Scientific American</i> , 2006 , 294, 48-51, 54-7	0.5	92
114	Nampt/PBEF/Visfatin: a regulator of mammalian health and longevity?. <i>Experimental Gerontology</i> , 2006 , 41, 718-26	4.5	91

113	Design and synthesis of compounds that extend yeast replicative lifespan. Aging Cell, 2007, 6, 35-43	9.9	90
112	Identification of a SIRT1 mutation in a family with type 1 diabetes. <i>Cell Metabolism</i> , 2013 , 17, 448-455	24.6	83
111	SIRT1 mRNA expression may be associated with energy expenditure and insulin sensitivity. <i>Diabetes</i> , 2010 , 59, 829-35	0.9	83
110	The lifespan extension effects of resveratrol are conserved in the honey bee and may be driven by a mechanism related to caloric restriction. <i>Aging</i> , 2012 , 4, 499-508	5.6	78
109	Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels <i>Journal of Biological Chemistry</i> , 2013 , 288, 24160	5.4	78
108	Why NAD(+) Declines during Aging: ItB Destroyed. <i>Cell Metabolism</i> , 2016 , 23, 965-966	24.6	75
107	NAD Repletion Rescues Female Fertility during Reproductive Aging. <i>Cell Reports</i> , 2020 , 30, 1670-1681.6	2710.6	74
106	Mitohormesis and metabolic health: The interplay between ROS, cAMP and sirtuins. <i>Free Radical Biology and Medicine</i> , 2019 , 141, 483-491	7.8	73
105	Resveratrol accelerates erythroid maturation by activation of FoxO3 and ameliorates anemia in beta-thalassemic mice. <i>Haematologica</i> , 2014 , 99, 267-75	6.6	73
104	Dietary restriction involves NAD+ -dependent mechanisms and a shift toward oxidative metabolism. <i>Aging Cell</i> , 2014 , 13, 1075-85	9.9	71
103	Type 5 adenylyl cyclase increases oxidative stress by transcriptional regulation of manganese superoxide dismutase via the SIRT1/FoxO3a pathway. <i>Circulation</i> , 2013 , 127, 1692-701	16.7	71
102	Paradigms and pitfalls of yeast longevity research. <i>Mechanisms of Ageing and Development</i> , 2002 , 123, 857-67	5.6	70
101	JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks. <i>Cell Reports</i> , 2016 , 16, 2641-2650	10.6	70
100	Epigenetic changes during aging and their reprogramming potential. <i>Critical Reviews in Biochemistry and Molecular Biology</i> , 2019 , 54, 61-83	8.7	68
99	Resveratrol inhibits pathologic retinal neovascularization in Vldlr(-/-) mice 2011 , 52, 2809-16		65
98	The ageing epigenome: damaged beyond repair?. Ageing Research Reviews, 2009, 8, 189-98	12	62
97	Comparing the Effects of Low-Protein and High-Carbohydrate Diets and Caloric Restriction on Brain Aging in Mice. <i>Cell Reports</i> , 2018 , 25, 2234-2243.e6	10.6	57
96	Dietary restriction: standing up for sirtuins. <i>Science</i> , 2010 , 329, 1012-3; author reply 1013-4	33.3	56

95	Sirtuins: a conserved key unlocking AceCS activity. <i>Trends in Biochemical Sciences</i> , 2007 , 32, 1-4	10.3	54
94	Resveratrol Improves Vascular Function and Mitochondrial Number but Not Glucose Metabolism in Older Adults. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2017 , 72, 1703	-1709	52
93	Telomere Dysfunction Induces Sirtuin Repression that Drives Telomere-Dependent Disease. <i>Cell Metabolism</i> , 2019 , 29, 1274-1290.e9	24.6	50
92	Restoration of normal embryogenesis by mitochondrial supplementation in pig oocytes exhibiting mitochondrial DNA deficiency. <i>Scientific Reports</i> , 2016 , 6, 23229	4.9	50
91	Prolyl isomerase Pin1 regulates neuronal differentiation via Etatenin. <i>Molecular and Cellular Biology</i> , 2012 , 32, 2966-78	4.8	49
90	C. elegans lifespan extension by osmotic stress requires FUdR, base excision repair, FOXO, and sirtuins. <i>Mechanisms of Ageing and Development</i> , 2016 , 154, 30-42	5.6	47
89	A high-confidence interaction map identifies SIRT1 as a mediator of acetylation of USP22 and the SAGA coactivator complex. <i>Molecular and Cellular Biology</i> , 2013 , 33, 1487-502	4.8	47
88	Geroncogenesis: metabolic changes during aging as a driver of tumorigenesis. <i>Cancer Cell</i> , 2014 , 25, 12	2-924.3	46
87	Head to Head Comparison of Short-Term Treatment with the NAD(+) Precursor Nicotinamide Mononucleotide (NMN) and 6 Weeks of Exercise in Obese Female Mice. <i>Frontiers in Pharmacology</i> , 2016 , 7, 258	5.6	46
86	The role of protein arginine methylation in the formation of silent chromatin. <i>Genes and Development</i> , 2006 , 20, 3249-54	12.6	41
85	Biomarkers of biological age as predictors of COVID-19 disease severity. <i>Aging</i> , 2020 , 12, 6490-6491	5.6	40
84	Frailty biomarkers in humans and rodents: Current approaches and future advances. <i>Mechanisms of Ageing and Development</i> , 2019 , 180, 117-128	5.6	38
83	Nicotinamide mononucleotide (NMN) supplementation ameliorates the impact of maternal obesity in mice: comparison with exercise. <i>Scientific Reports</i> , 2017 , 7, 15063	4.9	38
82	Sir2 histone deacetylase prevents programmed cell death caused by sustained activation of the Hog1 stress-activated protein kinase. <i>EMBO Reports</i> , 2011 , 12, 1062-8	6.5	38
81	NQR1 controls lifespan by regulating the promotion of respiratory metabolism in yeast. <i>Aging Cell</i> , 2009 , 8, 140-51	9.9	33
80	Controlled DNA double-strand break induction in mice reveals post-damage transcriptome stability. <i>Nucleic Acids Research</i> , 2016 , 44, e64	20.1	32
79	Characterization of murine SIRT3 transcript variants and corresponding protein products. <i>Journal of Cellular Biochemistry</i> , 2010 , 111, 1051-8	4.7	31
78	Cloning, and molecular characterization of the GCV1 gene encoding the glycine cleavage T-protein from Saccharomyces cerevisiae. <i>Gene</i> , 1997 , 186, 13-20	3.8	31

(2014-2020)

Age and life expectancy clocks based on machine learning analysis of mouse frailty. <i>Nature Communications</i> , 2020 , 11, 4618	17.4	31
Quantifying the cellular NAD+ metabolome using a tandem liquid chromatography mass spectrometry approach. <i>Metabolomics</i> , 2017 , 14, 15	4.7	29
Life-span extension in yeast. <i>Science</i> , 2006 , 312, 195-7; author reply 195-7	33.3	29
Impact papers on aging in 2009. <i>Aging</i> , 2010 , 2, 111-21	5.6	29
SIRT1 Limits Adipocyte Hyperplasia through c-Myc Inhibition. <i>Journal of Biological Chemistry</i> , 2016 , 291, 2119-35	5.4	27
Neuronal sirtuin1 mediates retinal vascular regeneration in oxygen-induced ischemic retinopathy. <i>Angiogenesis</i> , 2013 , 16, 985-92	10.6	26
Specific induction by glycine of the gene for the P-subunit of glycine decarboxylase from Saccharomyces cerevisiae. <i>Molecular Microbiology</i> , 1996 , 19, 611-23	4.1	26
Skeletal muscle overexpression of nicotinamide phosphoribosyl transferase in mice coupled with voluntary exercise augments exercise endurance. <i>Molecular Metabolism</i> , 2018 , 7, 1-11	8.8	25
Dynamic Acetylation of Phosphoenolpyruvate Carboxykinase Toggles Enzyme Activity between Gluconeogenic and Anaplerotic Reactions. <i>Molecular Cell</i> , 2018 , 71, 718-732.e9	17.6	25
Sex differences in the response to dietary restriction in rodents. <i>Current Opinion in Physiology</i> , 2018 , 6, 28-34	2.6	23
What is Xenohormesis?. American Journal of Pharmacology and Toxicology, 2008, 3, 152-159	0.6	22
Enhanced longevity and metabolism by brown adipose tissue with disruption of the regulator of G protein signaling 14. <i>Aging Cell</i> , 2018 , 17, e12751	9.9	21
The economic value of targeting aging. <i>Nature Aging</i> , 2021 , 1, 616-623		21
Role of the N-terminal region of Rap1p in the transcriptional activation of glycolytic genes in Saccharomyces cerevisiae. <i>Yeast</i> , 2004 , 21, 851-66	3.4	18
Barrier-to-autointegration factor 1 (Banf1) regulates poly [ADP-ribose] polymerase 1 (PARP1) activity following oxidative DNA damage. <i>Nature Communications</i> , 2019 , 10, 5501	17.4	18
Measurement of sirtuin enzyme activity using a substrate-agnostic fluorometric nicotinamide assay. <i>Methods in Molecular Biology</i> , 2013 , 1077, 167-77	1.4	17
Carboxamide SIRT1 inhibitors block DBC1 binding via an acetylation-independent mechanism. <i>Cell Cycle</i> , 2013 , 12, 2233-40	4.7	17
Sirtuin1 over-expression does not impact retinal vascular and neuronal degeneration in a mouse model of oxygen-induced retinopathy. <i>PLoS ONE</i> , 2014 , 9, e85031	3.7	17
	Quantifying the cellular NAD+ metabolome using a tandem liquid chromatography mass spectrometry approach. <i>Metabolomics</i> , 2017, 14, 15 Life-span extension in yeast. <i>Science</i> , 2006, 312, 195-7; author reply 195-7 Impact papers on aging in 2009. <i>Aging</i> , 2010, 2, 111-21 SIRT1 Limits Adipocyte Hyperplasia through c-Myc Inhibition. <i>Journal of Biological Chemistry</i> , 2016, 291, 2119-35 Neuronal sirtuin 1 mediates retinal vascular regeneration in oxygen-induced ischemic retinopathy. <i>Angiogenesis</i> , 2013, 16, 985-92 Specific induction by glycine of the gene for the P-subunit of glycine decarboxylase from Saccharomyces cerevisiae. <i>Molecular Microbiology</i> , 1996, 19, 611-23 Skeletal muscle overexpression of nicotinamide phosphoribosyl transferase in mice coupled with voluntary exercise augments exercise endurance. <i>Molecular Metabolism</i> , 2018, 7, 1-11 Dynamic Acetylation of Phosphoenolpyruvate Carboxykinase Toggles Enzyme Activity between Gluconeogenic and Anaplerotic Reactions. <i>Molecular Cell</i> , 2018, 71, 718-732.e9 Sex differences in the response to dietary restriction in rodents. <i>Current Opinion in Physiology</i> , 2018, 6, 28-34 What is Xenohormesis?. <i>American Journal of Pharmacology and Toxicology</i> , 2008, 3, 152-159 Enhanced longevity and metabolism by brown adipose tissue with disruption of the regulator of G protein signaling 14. <i>Aging Cell</i> , 2018, 17, e12751 The economic value of targeting aging. <i>Nature Aging</i> , 2021, 1, 616-623 Role of the N-terminal region of Rap1p in the transcriptional activation of glycolytic genes in Saccharomyces cerevisiae. <i>Yeast</i> , 2004, 21, 851-66 Barrier-to-autointegration factor 1 (Banf1) regulates poly [ADP-ribose] polymerase 1 (PARP1) activity following oxidative DNA damage. <i>Nature Communications</i> , 2019, 10, 5501 Measurement of sirtuin enzyme activity using a substrate-agnostic fluorometric nicotinamide assay. <i>Methods in Molecular Biology</i> , 2013, 1077, 167-77 Carboxamide SIRT1 inhibitors block DBC1 binding via an acetylation-independent mechanism. <i>Cell</i> Cycle, 201	Quantifying the cellular NAD+ metabolome using a tandem liquid chromatography mass spectrometry approach. <i>Metabolomics</i> , 2017, 14, 15 Life-span extension in yeast. <i>Science</i> , 2006, 312, 195-7; author reply 195-7 333 Impact papers on aging in 2009. <i>Aging</i> , 2010, 2, 111-21 56 SIRT1 Limits Adipocyte Hyperplasia through c-Myc Inhibition. <i>Journal of Biological Chemistry</i> , 2016, 291, 2119-35 Neuronal sirtuin1 mediates retinal vascular regeneration in oxygen-induced ischemic retinopathy. <i>Angiogenesis</i> , 2013, 16, 985-92 Specific induction by glycine of the gene for the P-subunit of glycine decarboxylase from Saccharomyces cerevisiae. <i>Malecular Microbiology</i> , 1996, 19, 611-23 Skeletal muscle overexpression of nicotinamide phosphoribosyl transferase in mice coupled with voluntary exercise augments exercise endurance. <i>Molecular Metabolism</i> , 2018, 7, 1-11 Dynamic Acetylation of Phosphoenolopyruvate Carboxykinase Toggles Enzyme Activity between Cluconeogenic and Anaplerotic Reactions. <i>Molecular Cell</i> , 2018, 71, 718-732.e9 5ex differences in the response to dietary restriction in rodents. <i>Current Opinion in Physiology</i> , 2018, 6, 28-34 What is Xenohormesis?. <i>American Journal of Pharmacology and Toxicology</i> , 2008, 3, 152-159 66 Enhanced longevity and metabolism by brown adipose tissue with disruption of the regulator of G protein signaling 14. <i>Aging Cell</i> , 2018, 17, e12751 The economic value of targeting aging. <i>Nature Aging</i> , 2021, 1, 616-623 Role of the N-terminal region of Rap1p in the transcriptional activation of glycolytic genes in Saccharomyces cerevisiae. <i>Yeas</i> , 2004, 21, 851-66 Barrier-to-autointegration factor 1 (Banf1) regulates poly (ADP-ribose) polymerase 1 (PARP1) activity following oxidative DNA damage. <i>Nature Communications</i> , 2019, 10, 5501 74 Measurement of sirtuin enzyme activity using a substrate-agnostic fluorometric nicotinamide assay. <i>Methods in Molecular Biology</i> , 2013, 1077, 167-77 Carboxamide SIRT1 inhibitors block DBC1 binding via an acetylation-independent mechanism. <i></i>

59	TPE or not TPE? ItB no longer a question. Trends in Pharmacological Sciences, 2002, 23, 1-4	13.2	16
58	The "metabolic winter" hypothesis: a cause of the current epidemics of obesity and cardiometabolic disease. <i>Metabolic Syndrome and Related Disorders</i> , 2014 , 12, 355-61	2.6	15
57	The Sirt1 activator SRT3025 expands hematopoietic stem and progenitor cells and improves hematopoiesis in Fanconi anemia mice. <i>Stem Cell Research</i> , 2015 , 15, 130-40	1.6	15
56	Analysis of 41 cancer cell lines reveals excessive allelic loss and novel mutations in the SIRT1 gene. <i>Cell Cycle</i> , 2013 , 12, 263-70	4.7	15
55	Studying the replicative life span of yeast cells. <i>Methods in Molecular Biology</i> , 2013 , 1048, 49-63	1.4	14
54	Mitochondrial and metabolic dysfunction in ageing and age-related diseases <i>Nature Reviews Endocrinology</i> , 2022 ,	15.2	14
53	Quantitative proteomic analysis of extracellular vesicle subgroups isolated by an optimized method combining polymer-based precipitation and size exclusion chromatography. <i>Journal of Extracellular Vesicles</i> , 2021 , 10, e12087	16.4	14
52	GLTSCR2/PICT1 links mitochondrial stress and Myc signaling. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 3781-6	11.5	13
51	Control of expression of one-carbon metabolism genes of Saccharomyces cerevisiae is mediated by a tetrahydrofolate-responsive protein binding to a glycine regulatory region including a core 5PCTTCTT-3Pmotif. <i>Journal of Biological Chemistry</i> , 1999 , 274, 10523-32	5.4	13
50	Nicotinamide impairs entry into and exit from meiosis I in mouse oocytes. <i>PLoS ONE</i> , 2015 , 10, e012619	4 3.7	13
49	Voluntary exercise normalizes the proteomic landscape in muscle and brain and improves the phenotype of progeroid mice. <i>Aging Cell</i> , 2019 , 18, e13029	9.9	12
48	Oogonial stem cells as a model to study age-associated infertility in women. <i>Reproduction, Fertility and Development</i> , 2015 , 27, 969-74	1.8	11
47	Can artificial intelligence identify effective COVID-19 therapies?. <i>EMBO Molecular Medicine</i> , 2020 , 12, e12817	12	11
46	ARDD 2020: from aging mechanisms to interventions. <i>Aging</i> , 2020 , 12, 24484-24503	5.6	11
45	Combining a High Dose of Metformin With the SIRT1 Activator, SRT1720, Reduces Life Span in Aged Mice Fed a High-Fat Diet. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2020 , 75, 2037-2041	6.4	10
44	The longevity of sirtuins. <i>Cell Reports</i> , 2012 , 2, 1473-4	10.6	10
43	Restoring stem cells - all you need is NAD(.). Cell Research, 2016, 26, 971-2	24.7	9
42	Reversal of ageing- and injury-induced vision loss by Tet-dependent epigenetic reprogramming		9

(2011-2007)

41	Caloric restriction and life span determination of yeast cells. <i>Methods in Molecular Biology</i> , 2007 , 371, 97-109	1.4	9
40	Longitudinal analysis of biomarker data from a personalized nutrition platform in healthy subjects. <i>Scientific Reports</i> , 2018 , 8, 14685	4.9	9
39	Oxidative Priority, Meal Frequency, and the Energy Economy of Food and Activity: Implications for Longevity, Obesity, and Cardiometabolic Disease. <i>Metabolic Syndrome and Related Disorders</i> , 2017 , 15, 6-17	2.6	8
38	Cell biology. An age of instability. <i>Science</i> , 2003 , 301, 1859-60	33.3	8
37	Impacts of obesity, maternal obesity and nicotinamide mononucleotide supplementation on sperm quality in mice. <i>Reproduction</i> , 2019 , 158, 169-179	3.8	7
36	NAD in COVID-19 and viral infections <i>Trends in Immunology</i> , 2022 ,	14.4	7
35	Administration of Nicotinamide Mononucleotide (NMN) Reduces Metabolic Impairment in Male Mouse Offspring from Obese Mothers. <i>Cells</i> , 2020 , 9,	7.9	7
34	Molecular and Cellular Characterization of SIRT1 Allosteric Activators. <i>Methods in Molecular Biology</i> , 2019 , 1983, 133-149	1.4	6
33	DNA Break-Induced Epigenetic Drift as a Cause of Mammalian Aging		6
32	Erosion of the Epigenetic Landscape and Loss of Cellular Identity as a Cause of Aging in Mammals		6
31	Harvard HIV and Aging Workshop: Perspectives and Priorities from Claude D. Pepper Centers and Centers for AIDS Research. <i>AIDS Research and Human Retroviruses</i> , 2019 , 35, 999-1012	1.6	5
30	SIRT2 controls the pentose phosphate switch. <i>EMBO Journal</i> , 2014 , 33, 1287-8	13	5
29	The Aging Liver and the Effects of Long Term Caloric Restriction 2010 , 191-216		5
28	Neuroprotective effects and mechanisms of action of nicotinamide mononucleotide (NMN) in a photoreceptor degenerative model of retinal detachment. <i>Aging</i> , 2020 , 12, 24504-24521	5.6	5
27	The elusive NMN transporter is found. <i>Nature Metabolism</i> , 2019 , 1, 8-9	14.6	5
26	Nicotinamide mononucleotide (NMN) deamidation by the gut microbiome and evidence for indirect upregulation of the NAD+metabolome		4
25	Assays for NAD-Dependent Reactions and NAD Metabolites. <i>Methods in Molecular Biology</i> , 2018 , 1813, 77-90	1.4	3
24	Sirtuins in Aging and Age-Related Diseases 2011 , 243-274		3

23	Gut Microbiota Predicts Healthy Late-Life Aging in Male Mice. Nutrients, 2021, 13,	6.7	3
22	Multiple basal cell carcinomas in a patient with myotonic dystrophy type 1. <i>BMJ Case Reports</i> , 2019 , 12,	0.9	2
21	Sirtuin Activation by Small Molecules 2016 , 243-266		2
20	Reduced Levels of NAD in Skeletal Muscle and Increased Physiologic Frailty Are Associated With Viral Coinfection in Asymptomatic Middle-Aged Adults <i>Journal of Acquired Immune Deficiency Syndromes (1999)</i> , 2022 , 89, S15-S22	3.1	2
19	Ultra-cheap and scalable epigenetic age predictions with TIME-Seq		2
18	The Soluble Adenylyl Cyclase Inhibitor LRE1 Prevents Hepatic Ischemia/Reperfusion Damage Through Improvement of Mitochondrial Function. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	2
17	Extracellular Vesicles for the Treatment of Radiation-Induced Normal Tissue Toxicity in the Lung. <i>Frontiers in Oncology</i> , 2020 , 10, 602763	5.3	2
16	Dietary Restriction, Hormesis, and Small Molecule Mimetics 2005 , 63-104		1
15	Measuring PGC-1∄nd Its Acetylation Status in Mouse Primary Myotubes. <i>Methods in Molecular Biology</i> , 2021 , 2310, 301-309	1.4	1
14	Yeast RecQ Helicases: Clues to DNA Repair, Genome Stability and Aging 2004 , 78-106		1
13	Dynamic stem cell selection safeguards the genomic integrity of the epidermis <i>Developmental Cell</i> , 2021 , 56, 3309-3320.e5	10.2	1
12	NMN Rescues Endothelial Function and Neurovascular Coupling, Improving Cognitive Function in Aged Mice. <i>Innovation in Aging</i> , 2020 , 4, 121-121	0.1	O
11	Liver-specific overexpression of SIRT3 enhances oxidative metabolism, but does not impact metabolic defects induced by high fat feeding in mice <i>Biochemical and Biophysical Research Communications</i> , 2022 , 607, 131-137	3.4	0
10	Response to: "If the Metabolic Winter Is Coming, When Will It Be Summer?" (Metab Syndr Relat Disord 2017;15:3). <i>Metabolic Syndrome and Related Disorders</i> , 2017 , 15, 4-5	2.6	
9	Sirtuin Activators 2019 , 210-210		
8	Measuring PGC-1⊞and its acetylation status in mouse primary myotubes. <i>Methods in Molecular Biology</i> , 2015 , 1241, 49-57	1.4	
7	Pharmacological Approaches for Modulating Sirtuins 2018 , 71-81		
6	Metabolic Regulation of Gene Silencing and Life Span 2003 , 193-211		

LIST OF PUBLICATIONS

5 Is DNA cut out for a long life?. Science of Aging Knowledge Environment: SAGE KE, 2003, 2003, PE8

4	Poly-Glutamine Induces Bax-Mediated Cell Death by Dissociating Ku70 from Bax through Ku70-Acetylation <i>Blood</i> , 2005 , 106, 4299-4299	2.2
3	Effects of High Fat Diet Induced Obesity on Mitochondrial Biogenesis and Function Impact of Exercise or Nicotinamide Mononucleotide (NMN). <i>FASEB Journal</i> , 2015 , 29, 777.8	0.9
2	Resveratrol Induces Erythroid Maturation by Activating FOXO3 and Improves in Vivo Erythropoiesis in Normal and Beta -Thalassemic Mice. <i>Blood</i> , 2012 , 120, 3191-3191	2.2
1	Plant-Based Diets and Longevity. Alternative and Complementary Therapies, 2020, 26, 153-154	0.3