Giampiero de Cesare

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7150179/publications.pdf

Version: 2024-02-01

220 papers 2,117 citations

201385 27 h-index 35 g-index

229 all docs

229 docs citations

times ranked

229

1478 citing authors

#	Article	IF	CITATIONS
1	Downsizing Effects on Micro and Nano Comb Drives. Actuators, 2022, 11, 71.	1.2	5
2	Evanescent waveguide lab-on-chip for optical biosensing in food quality control. Photonics Research, 2022, 10, 1453.	3.4	9
3	On-Glass Integrated SU-8 Waveguide and Amorphous Silicon Photosensor for On-Chip Detection of Biomolecules: Feasibility Study on Hemoglobin Sensing. Sensors, 2021, 21, 415.	2.1	18
4	Selective contacts and fill factor limitations in heterojunction solar cells. Progress in Photovoltaics: Research and Applications, 2021, 29, 876-884.	4.4	6
5	Large-Area Thin Film Heater for Thermal Treatments in Lab-on-Chip. , 2021, , .		1
6	Transparent Oxide/Metal/Oxide Thin Film Heater With Integrated Resistive Temperature Sensors. IEEE Sensors Journal, 2021, 21, 18847-18854.	2.4	5
7	Optical Detection of Analytes through Evanescent Waves in Lab-on-Chip Devices. , 2021, , .		2
8	Split Aptamers Immobilized on Polymer Brushes Integrated in a Lab-on-Chip System Based on an Array of Amorphous Silicon Photosensors: A Novel Sensor Assay. Materials, 2021, 14, 7210.	1.3	5
9	Compliant Nano-Pliers as a Biomedical Tool at the Nanoscale: Design, Simulation and Fabrication. Micromachines, 2020, 11, 1087.	1.4	14
10	On the Stability of Amorphous Silicon Temperature Sensors. IEEE Transactions on Electron Devices, 2020, 67, 3348-3354.	1.6	7
11	Micro-incubator Based on Lab-on-Glass Technology for Nanosatellite Missions. Lecture Notes in Electrical Engineering, 2020, , 83-89.	0.3	1
12	Stability of Hydrogenated Amorphous Silicon Diodes as Thin Film Temperature Sensors. Lecture Notes in Electrical Engineering, 2020, , 259-264.	0.3	0
13	Integrated chemiluminescence-based lab-on-chip for detection of life markers in extraterrestrial environments. Biosensors and Bioelectronics, 2019, 123, 195-203.	5.3	31
14	Development of an Electrochemiluminescence-based Lab-on-Chip Using Thin/Thick Film Technologies. , 2019, , .		1
15	Equivalent Electrical Model of a-Si:H Diodes for Lab-on-Chip Technology. , 2019, , .		2
16	A new NEMS Based Linear-to-Rotary Displacement-Capacity Transducer. , 2019, , .		4
17	Integrated 3D Microfluidic Device for Impedance Spectroscopy in Lab-on-Chip Systems. , 2019, , .		6
18	Thin Film Sensor Platform for on-Chip Detection of Fluorescence-Based Aptamer Assay. , 2019, , .		1

#	Article	IF	CITATIONS
19	Portable Optoelectronic System for Monitoring Enzymatic Chemiluminescent Reaction. Lecture Notes in Electrical Engineering, 2019, , 189-194.	0.3	O
20	On-Glass Integration of Thin Film Devices for Monitoring of Cell Bioluminescence. Lecture Notes in Electrical Engineering, 2019, , 45-51.	0.3	0
21	On-chip real-time monitoring of multiple displacement amplification of DNA. Sensors and Actuators B: Chemical, 2019, 293, 16-22.	4.0	14
22	Design and Fabrication of Lab-on-chip for Fluorescence Detection of Ruthenium Complex. , 2019, , .		0
23	Fluorescent Label-Free Aptasensor Integrated in a Lab-on-Chip System for the Detection of Ochratoxin A in Beer and Wheat. ACS Applied Bio Materials, 2019, 2, 5880-5887.	2.3	20
24	On-chip LAMP-BART reaction for viral DNA real-time bioluminescence detection. Sensors and Actuators B: Chemical, 2018, 262, 1024-1033.	4.0	21
25	Integrated Sensor System for DNA Amplification and Separation Based on Thin Film Technology. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8, 1141-1148.	1.4	11
26	Advances, challenges and opportunities for point-of-need screening of mycotoxins in foods and feeds. Analyst, The, 2018, 143, 1015-1035.	1.7	33
27	Optoelectronic System for Mycotoxin Detection in Food Quality Control. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8, 1195-1202.	1.4	7
28	Integrated Evanescent Waveguide Detector for Optical Sensing. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8, 1180-1186.	1.4	22
29	Integration of Amorphous Silicon Photosensors with Thin Film Interferential Filter for Biomolecule Detection. Lecture Notes in Electrical Engineering, 2018, , 121-127.	0.3	0
30	Development of a NEMS-Technology BasedÂNano Gripper. Mechanisms and Machine Science, 2018, , 601-611.	0.3	8
31	Hydrogenated silicon sub-oxide film for an effective and thermal stable silicon surface passivation. , $2018, \ldots$		0
32	Integrated Optoelectronic Device for Detection of Fluorescent Molecules. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12, 1337-1344.	2.7	14
33	On-Glass Optoelectronic Platform for On-Chip Detection of DNA. Proceedings (mdpi), 2018, 2, 1014.	0.2	1
34	Temperature effects on sputtered ITO. , 2018, , .		2
35	An Interdisciplinary Approach to the Nanomanipulation of SiO2 Nanoparticles: Design, Fabrication and Feasibility. Applied Sciences (Switzerland), 2018, 8, 2645.	1.3	12
36	An Approach to the Extreme Miniaturization of Rotary Comb Drives. Actuators, 2018, 7, 70.	1.2	16

#	Article	IF	CITATIONS
37	Optoelectronics properties of tungsten oxide nanoparticle networks deposited by flame spray pyrolysis. MRS Advances, 2018, 3, 3391-3396.	0.5	1
38	Amorphous Silicon Temperature Sensors Integrated with Thin Film Heaters for Thermal Treatments of Biomolecules. Lecture Notes in Electrical Engineering, 2018, , 183-193.	0.3	1
39	Design, Fabrication and Testing of a Capillary Microfluidic System with Stop-and-Go Valves Using EWOD Technology. Lecture Notes in Electrical Engineering, 2018, , 200-208.	0.3	0
40	Enhancement in PDMS-Based Microfluidic Network for On-Chip Thermal Treatment of Biomolecules. Lecture Notes in Electrical Engineering, 2018, , 99-106.	0.3	0
41	Optoelectronic System-on-Glass for On-Chip Detection of Fluorescence. Lecture Notes in Electrical Engineering, 2018, , 143-149.	0.3	2
42	Design of an Evanescent Waveguide Sensor Based on a-Si:H Photodiodes for Lab-on-Chip Applications. Lecture Notes in Electrical Engineering, 2018, , 137-142.	0.3	2
43	Portable detection system for Ochratoxin A by real time chromatography and a-Si:H photodiodes. , 2017, , .		2
44	Electro-optical detector for lab-on-chip applications. , 2017, , .		1
45	Multifunctional System-on-Glass for Lab-on-Chip applications. Biosensors and Bioelectronics, 2017, 93, 315-321.	5.3	38
46	Lab-on-glass system for DNA treatments. , 2017, , .		1
47	Integration of electrowetting technology inside an all-glass microfluidic network. , 2017, , .		0
48	Evanescent Waveguide Sensor for On-Chip Biomolecular Detection. Proceedings (mdpi), 2017, 1, 562.	0.2	0
49	An All-Glass Microfluidic Network with Integrated Amorphous Silicon Photosensors for on-Chip Monitoring of Enzymatic Biochemical Assay. Biosensors, 2017, 7, 58.	2.3	11
50	Integrated System Based on Thin Film Technologies for Cell-Based Bioluminescence Assays. Proceedings (mdpi), 2017, 1 , .	0.2	1
51	Integrated Sensor based on a-Si:H Photodiodes and Diffused Glass Waveguides for Biomedical Applications. , 2017, , .		0
52	Thin Film Differential Photosensor for Reduction of Temperature Effects in Lab-on-Chip Applications. Sensors, 2016, 16, 267.	2.1	3
53	Integration of Amorphous Silicon Balanced Photodiodes and Thin Film Heaters for Biosensing Application. Procedia Engineering, 2016, 168, 1434-1437.	1.2	1
54	Integration of Capillary and EWOD Technologies for Autonomous and Low-power Consumption Micro-analytical Systems. Procedia Engineering, 2016, 168, 1370-1373.	1.2	3

#	Article	lF	Citations
55	Technologies for autonomous integrated lab-on-chip systems for space missions. Acta Astronautica, 2016, 128, 401-408.	1.7	12
56	Chemiluminescence lateral flow immunoassay cartridge with integrated amorphous silicon photosensors array for human serum albumin detection in urine samples. Analytical and Bioanalytical Chemistry, 2016, 408, 8869-8879.	1.9	46
57	Microfluidic cartridge with integrated array of amorphous silicon photosensors for chemiluminescence detection of viral DNA. Sensing and Bio-Sensing Research, 2016, 7, 127-132.	2.2	3
58	Aptamer-based sandwich assay for on chip detection of Ochratoxin A by an array of amorphous silicon photosensors. Sensors and Actuators B: Chemical, 2016, 230, 31-39.	4.0	48
59	Detection of viral DNA by isothermal NASBA amplification and chemiluminescence gene probe hybridization assay in a microfluidic cartridge. Journal of Clinical Virology, 2015, 70, S91-S92.	1.6	2
60	Array of differential photodiodes for thermal effects minimization in biomolecular analysis. , 2015, , .		0
61	Multilayer integrated structure for selective detection of Ochratoxin A. , 2015, , .		1
62	Amorphous Silicon p-i-n Structure Acting as Light and Temperature Sensor. Sensors, 2015, 15, 12260-12272.	2.1	32
63	On-chip detection performed by amorphous silicon balanced photosensor for lab-on chip application. Sensing and Bio-Sensing Research, 2015, 3, 53-58.	2.2	7
64	Simultaneous measurement of light and temperature by a single amorphous silicon sensor., 2015,,.		1
65	Lab-on-chip system combining a microfluidic-ELISA with an array of amorphous silicon photosensors for the detection of celiac disease epitopes. Sensing and Bio-Sensing Research, 2015, 6, 51-58.	2.2	33
66	Thermal control system based on thin film heaters and amorphous silicon diodes. , 2015, , .		11
67	Relevance Of TCO workfunction in n-silicon oxide emitter - c-Si (p) heterojunction solar cell., 2015,,.		O
68	Amorphous silicon photosensors integrated in microfluidic structures as a technological demonstrator of a "true―Lab-on-Chip system. Sensing and Bio-Sensing Research, 2015, 3, 98-104.	2.2	15
69	Thermally actuated microfluidic system for lab on chip applications. , 2015, , .		3
70	Drop position sensing in digital microfluidics based on capacitance measurement., 2015,,.		1
71	Design and experimental characterization of thin film heaters on glass substrate for Lab-on-Chip applications. Sensors and Actuators A: Physical, 2015, 229, 203-210.	2.0	26
72	Thermal characterization of thin film heater for lab-on-chip application. , 2015, , .		4

#	Article	IF	Citations
73	2-D digital microfluidic system for droplet handling using Printed Circuit Board technology. , 2015, , .		3
74	Rapid prototyping of glass microfluidic chips based on autonomous capillary networks for physiological solutions. , 2015, , .		2
75	Design and fabrication of microfluidics system integrated with temperature actuated microvalve. Sensors and Actuators A: Physical, 2015, 236, 206-213.	2.0	20
76	Sophie: A General Purpose Sub-Picoamps Current Readout Electronics. Lecture Notes in Electrical Engineering, 2015, , 285-289.	0.3	4
77	Amorphous Silicon Photosensors for Food Quality Control Applications. Lecture Notes in Electrical Engineering, 2015, , 249-253.	0.3	1
78	Evaluation of Hydrogen plasma effect in a-Si:H/c-Si interface by means of Surface Photovoltage measurement and FTIR spectroscopy. , 2014, , .		1
79	Hydrogen Plasma and Thermal Annealing Treatments on a-Si:H Thin Film for c-Si Surface Passivation. Energy Procedia, 2014, 60, 102-108.	1.8	13
80	Multi-channel Very-low-noise Current Acquisition System with On-board Voltage Supply for Sensor Biasing and Readout. Procedia Engineering, 2014, 87, 1577-1580.	1.2	3
81	Polydimethylsiloxane material as hydrophobic and insulating layer in electrowetting-on-dielectric systems. Microelectronics Journal, 2014, 45, 1684-1690.	1.1	31
82	Thermal characterization of a thin film heater on glass substrate for lab-on-chip applications. , 2014, , .		7
83	On-chip detection of multiple serum antibodies against epitopes of celiac disease by an array of amorphous silicon sensors. RSC Advances, 2014, 4, 2073-2080.	1.7	38
84	Multiwell cartridge with integrated array of amorphous silicon photosensors for chemiluminescence detection: development, characterization and comparison with cooled-CCD luminograph. Analytical and Bioanalytical Chemistry, 2014, 406, 5645-5656.	1.9	34
85	Amorphous silicon photosensors for on-chip detection in digital microfluidic system. Sensors and Actuators A: Physical, 2014, 216, 1-6.	2.0	7
86	DEMOCHEM: Integrated System for Mycotoxins Detection. Procedia Engineering, 2014, 87, 1354-1357.	1.2	4
87	Chemiluminescence-Based Micro-Total-Analysis System with Amorphous Silicon Photodiodes. Lecture Notes in Electrical Engineering, 2014, , 207-211.	0.3	4
88	Thin Film Device for Background Photocurrent Rejection in Biomolecular Analysis Systems. Lecture Notes in Electrical Engineering, 2014, , 281-285.	0.3	0
89	Microfluidic Chip With Integrated a-Si:H Photodiodes for Chemiluminescence-Based Bioassays. IEEE Sensors Journal, 2013, 13, 2595-2602.	2.4	38
90	Electrowetting-on-dielectric system based on polydimethylsiloxane., 2013,,.		8

#	Article	IF	CITATIONS
91	Performances of amorphous silicon photodiodes integrated in chemiluminescence based \hat{l} /4-TAS. Proceedings of SPIE, 2013, , .	0.8	1
92	Amorphous silicon balanced photodiode for microfluidic applications. Proceedings of SPIE, 2013, , .	0.8	1
93	Surface photovoltage as a tool to monitor the effect of hydrogen treatment on a-Si:H/c-Si heterojunction. , 2013, , .		3
94	Monitoring of Temperature Distribution in a Thin Film Heater by an Array of a-Si:H Temperature Sensors. IEEE Sensors Journal, 2012, 12, 1209-1213.	2.4	28
95	Amorphous Silicon Photosensors for Detection of Ochratoxin a in Wine. IEEE Sensors Journal, 2012, 12, 2674-2679.	2.4	29
96	Contact Formation on a-Si:H/c-Si Heterostructure Solar Cells. Engineering Materials, 2012, , 331-375.	0.3	8
97	Electrical Properties of ITO/Crystalline-Silicon Contact at Different Deposition Temperatures. IEEE Electron Device Letters, 2012, 33, 327-329.	2.2	33
98	Modeling of the photo-response of a smart thin layer chromatography system. , 2011, , .		5
99	Early detection of ochratoxigenic fungi in wine grapes and of ochratoxin A in wine. Annals of Microbiology, 2011, 61, 11-15.	1.1	9
100	Heterojunction solar cells on multi- crystalline silicon: surface treatments. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 928-931.	0.8	0
101	Back contact formation for p-type based a-Si:H/c-Si heterojunction solar cells. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 932-935.	0.8	14
102	High dynamic range current-to-digital readout electronics for lab-on-chip applications., 2011,,.		2
103	Detection system based on a novel large area hybrid detector. Microelectronics Journal, 2010, 41, 752-757.	1.1	0
104	a-Si:H temperature sensor integrated in a thin film heater. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 708-711.	0.8	19
105	Improving the built-in potential of p-i-n amorphous silicon solar cells. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, NA-NA.	0.8	0
106	Characterization of the common mode rejection ratio of amorphous silicon balanced photodiode. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1164-1167.	0.8	0
107	Built-in Enhancement in a-Si:H Solar Cell by Chromium Silicide Layer. IEEE Electron Device Letters, 2010, 31, 689-691.	2.2	9
108	Linear Photosensor Array for On-Chip Food Quality Control Based on Thin Layer Chromatography. Sensor Letters, 2010, 8, 465-469.	0.4	5

#	Article	IF	CITATIONS
109	Lab-on-Glass System for DNA Analysis using Thin and Thick Film Technologies. Materials Research Society Symposia Proceedings, 2009, 1191, 48.	0.1	24
110	Bragg reflector and laser fired back contact in a-Si:H/c-Si heterostructure solar cell. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 159-160, 48-52.	1.7	9
111	On the fabrication and characterization of amorphous silicon ultra-violet sensor array. Thin Solid Films, 2009, 517, 6422-6425.	0.8	2
112	Amorphous silicon twin photodiode structure for differential current measurements. Thin Solid Films, 2009, 517, 6418-6421.	0.8	2
113	Amorphous silicon balanced photodiode for detection of ultraviolet radiation. Sensors and Actuators A: Physical, 2009, 153, 1-4.	2.0	8
114	Amorphous silicon balanced photodiode for application in biomolecular analysis., 2009,,.		1
115	Large area hybrid detector technology based on amorphous silicon photosensors. , 2009, , .		1
116	Innovative design of amorphous/crystalline silicon heterojunction solar cell. Thin Solid Films, 2008, 516, 6771-6774.	0.8	7
117	Detailed Study of Amorphous Silicon Ultraviolet Sensor With Chromium Silicide Window Layer. IEEE Transactions on Electron Devices, 2008, 55, 452-456.	1.6	29
118	Back contacted a-Si:H/c-Si heterostructure solar cells. Journal of Non-Crystalline Solids, 2008, 354, 2386-2391.	1.5	22
119	Chromatography system based on amorphous silicon sensor. Journal of Non-Crystalline Solids, 2008, 354, 2615-2618.	1.5	5
120	Characterization of chromium silicide thin layer formed on amorphous silicon films. Journal of Non-Crystalline Solids, 2008, 354, 2171-2175.	1.5	23
121	B̲ ack E̲ nhanced H̲ eterostructure with I̲ N̲ terDigitated contact – BEHIND - solar cell. , 2008, , .		13
122	Innovative Amorphous Silicon Balanced Ultraviolet Photodiode. IEEE Electron Device Letters, 2008, 29, 1299-1301.	2.2	3
123	Label-free DNA analysis system based on Lab-On-Glass technology. , 2008, , .		0
124	Dielectric Bragg back reflecting mirror in a-Si:H / c-Si heterostructure solar cell. , 2008, , .		0
125	Two-Color Sensor for Biomolecule Detection. Sensor Letters, 2008, 6, 542-547.	0.4	10
126	Detection of labelled DNA based on amorphous silicon devices. , 2008, , .		0

#	Article	lF	Citations
127	On The Realization Of Chromium Silicide Stress Sensor. , 2008, , .		O
128	Innovative Chromatographic System Based on Amorphous Silicon Sensors. Sensor Letters, 2008, 6, 537-541.	0.4	0
129	Two-color amorphous silicon photodiode for multicolor detection of labeled DNA. , 2007, , .		0
130	An alternative system for mycotoxin detection based on amorphous silicon sensors. , 2007, , .		1
131	Amorphous Silicon Sensors for Single and Multicolor Detection of Biomolecules. IEEE Sensors Journal, 2007, 7, 1274-1280.	2.4	25
132	Smart thin layer chromatography plate. Lab on A Chip, 2007, 7, 978.	3.1	27
133	Chromatographic System Based on Amorphous Silicon Photodiodes. , 2007, , .		0
134	Improving the stability of amorphous silicon ultraviolet sensors. Thin Solid Films, 2007, 515, 7517-7521.	0.8	14
135	Chromium silicide film on ceramic substrate for pressure measurement. Thin Solid Films, 2007, 515, 7647-7649.	0.8	0
136	Spectral tuned amorphous silicon p–i–n for DNA detection. Journal of Non-Crystalline Solids, 2006, 352, 2004-2006.	1.5	27
137	Innovative window layer for amorphous silicon/amorphous silicon carbide UV sensor. Journal of Non-Crystalline Solids, 2006, 352, 1818-1821.	1.5	5
138	Spectral behaviour of an INTEGRAL sample of black hole candidates: Initial results. Advances in Space Research, 2006, 38, 1369-1373.	1.2	0
139	Maximum power point tracker for portable photovoltaic systems with resistive-like load. Solar Energy, 2006, 80, 982-988.	2.9	60
140	Hydrogenated amorphous silicon ultraviolet sensor for deoxyribonucleic acid analysis. Applied Physics Letters, 2006, 88, 083904.	1.5	48
141	Innovative Optoelectronic Approaches to Biomolecular Analysis with Arrays of Silicon Devices., 2006,		2
142	1E 1740.7 \hat{a} e"2942: Temporal and spectral evolution from INTEGRAL and RXTE observations. Astronomy and Astrophysics, 2005, 433, 613-617.	2.1	26
143	Comparison of amorphous/crystalline heterojunction solar cells based on n- and p-type crystalline silicon. Thin Solid Films, 2004, 451-452, 355-360.	0.8	38
144	17% efficiency heterostructure solar cell based on p-type crystalline silicon. Journal of Non-Crystalline Solids, 2004, 338-340, 663-667.	1,5	50

#	Article	IF	CITATIONS
145	a-Si:H alloy for stress sensor application. Journal of Non-Crystalline Solids, 2004, 338-340, 725-728.	1.5	8
146	Amorphous silicon junction field-effect transistor with low pinch-off voltage for analog applications. Journal of Non-Crystalline Solids, 2004, 338-340, 762-765.	1.5	1
147	Low pinch-off voltage amorphous silicon junction field-effect transistor: experiment and simulation. IEEE Transactions on Electron Devices, 2003, 50, 1559-1561.	1.6	2
148	Experimental realization of field effect a-Si:H solar cells. Thin Solid Films, 2003, 427, 166-170.	0.8	3
149	A novel a-Si:H mechanical stress sensor. Thin Solid Films, 2003, 427, 191-195.	0.8	28
150	Laser treatment of amorphous silicon junction field effect transistor channel. Journal of Non-Crystalline Solids, 2002, 299-302, 1326-1329.	1.5	0
151	Photocapacitance of Hydrogenated Amorphous Silicon Phototransistors. Materials Research Society Symposia Proceedings, 2001, 664, 2631.	0.1	0
152	Characterisation and modelling of a two terminal visible/infrared photodetector based on amorphous/crystalline silicon heterostructure. Sensors and Actuators A: Physical, 2001, 88, 139-145.	2.0	7
153	Non Linear Optical Gain in Bulk Barrier Amorphous Silicon Phototransistor. Materials Research Society Symposia Proceedings, 2000, 609, 1231.	0.1	0
154	A Junction Field Effect Transistor Based on Hydrogenated Amorphous Silicon. Materials Research Society Symposia Proceedings, 2000, 609, 3111.	0.1	0
155	Optical link for digital transmissions using porous silicon light emitting diode. Journal of Non-Crystalline Solids, 2000, 266-269, 1238-1240.	1.5	1
156	On the relation between defect density and dopant concentration in amorphous silicon films. Journal of Non-Crystalline Solids, 2000, 266-269, 565-568.	1.5	7
157	Amorphous silicon p–i–n on p crystalline silicon photodetector in the visible and near infrared spectrum. Journal of Non-Crystalline Solids, 2000, 266-269, 1218-1222.	1.5	3
158	Amorphous silicon junction field-effect transistor for digital and analog applications. Applied Physics Letters, 2000, 77, 1390-1392.	1.5	4
159	TECHNOLOGY OF LARGE AREA TWO-DIMENSIONAL COLOR IMAGE SENSOR. , 2000, , .		0
160	Thin film photodetectors for the UV and vacuum UV spectral range. , 1999, 3737, 363.		0
161	Experimental evidence of boron induced charged defects in amorphous silicon materials. Thin Solid Films, 1999, 348, 79-83.	0.8	2
162	Amorphous silicon switching device for high-resolution two-color photodetector matrix. Sensors and Actuators A: Physical, 1999, 78, 108-113.	2.0	6

#	Article	IF	CITATIONS
163	Near Infrared Response of Amorphous Silicon Detector Grown with Microcompensated Absorber Layer. Materials Research Society Symposia Proceedings, 1999, 557, 839.	0.1	1
164	Modeling and realization of an amorphous silicon device with negative differential resistance. IEEE Transactions on Electron Devices, 1998, 45, 270-276.	1.6	2
165	Interaction of phosphorus and boron in compensated amorphous silicon films. Journal of Non-Crystalline Solids, 1998, 227-230, 380-384.	1.5	7
166	Modulation of threshold voltages in bidirectional a-Si:H switching devices. Journal of Non-Crystalline Solids, 1998, 227-230, 1192-1195.	1.5	0
167	Amorphous silicon sensors for oxidised porous silicon optical waveguides buried in silicon wafers. Journal of Non-Crystalline Solids, 1998, 227-230, 1354-1358.	1.5	2
168	Metastability effect in solar blind UV amorphous silicon carbide photodetector. Journal of Non-Crystalline Solids, 1998, 227-230, 1316-1320.	1.5	10
169	Infrared photodetection at room temperature using photocapacitance in amorphous silicon structures. Applied Physics Letters, 1998, 72, 1229-1231.	1.5	23
170	A Novel Room Temperature Infrared Detector Using Micro-Compensated Amorphous Silicon. Materials Research Society Symposia Proceedings, 1998, 507, 219.	0.1	1
171	Amorphous Silicon Photodetectors for Silicon Based Optical Waveguides. Solid State Phenomena, 1997, 54, 45-49.	0.3	1
172	On the Compensation Mechanism of Amorphous Silicon Films: Study of Stability. Materials Research Society Symposia Proceedings, 1997, 467, 91.	0.1	3
173	Amorphous/Crystalline Silicon Two Terminal Visible \tilde{A}_1 nfrared Tunable Photodetector: Modeling and Realization. Materials Research Society Symposia Proceedings, 1997, 467, 937.	0.1	0
174	Evidence of Hysteresis in a New p-i-n-i-p-i-n Amorphous Silicon Device. Materials Research Society Symposia Proceedings, 1997, 467, 943.	0.1	0
175	Thin-film photodetectors for the vacuum ultraviolet spectral region. Applied Optics, 1997, 36, 2751.	2.1	3
176	Amorphous silicon thin film as tuneable and high sensitive photodetector in the UV and far UV spectral range. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 387, 243-245.	0.7	4
177	Laser and nitrogen plasma beam induced modifications in amorphous silicon thin films. Applied Surface Science, 1997, 109-110, 87-92.	3.1	0
178	Investigation of amorphous silicon compensated materials over a wide range of dopant concentrations. Thin Solid Films, 1997, 303, 269-272.	0.8	9
179	New a-Si:H two-terminal switching device for active display. Journal of Non-Crystalline Solids, 1996, 198-200, 1134-1136.	1.5	16
180	Amorphous silicon UV photodetectors with rejection of the visible spectrum. Journal of Non-Crystalline Solids, 1996, 198-200, 1198-1201.	1.5	9

#	Article	IF	Citations
181	Variable spectral response photodetector based on crystalline/amorphous silicon heterostructure. Journal of Non-Crystalline Solids, 1996, 198-200, 1189-1192.	1.5	8
182	<title>Amorphous silicon thin film photodetectors with high sensitivity and selectivity in the ultraviolet spectrum</title> ., 1996, 2808, 605.		1
183	Effect Of μ-Doped Compensated Material on Stability of a-Si:H Solar Cells. Materials Research Society Symposia Proceedings, 1996, 420, 27.	0.1	1
184	Crystallization of amorphous silicon carbide thin films by laser treatment. Surface and Coatings Technology, 1996, 80, 237-241.	2.2	12
185	Modeling and realization of a high-gain homojunction a-Si:H bulk barrier phototransistor. IEEE Transactions on Electron Devices, 1996, 43, 1077-1084.	1.6	9
186	Solar-blind UV photodetectors for large area applications. IEEE Transactions on Electron Devices, 1996, 43, 1351-1356.	1.6	53
187	A switching device based on a-Si:H n-i-δp-i-n stacked structure: modeling and characterization. IEEE Transactions on Electron Devices, 1996, 43, 2109-2112.	1.6	9
188	Conductivity effects in hydrogenated amorphous silicon induced by gamma-ray irradiation. Sensors and Actuators B: Chemical, 1996, 31, 107-109.	4.0	0
189	Activation of dopant in the p-layer of amorphous silicon solar cells under illumination. Solar Energy Materials and Solar Cells, 1996, 43, 263-272.	3.0	8
190	Crystallization of silicon carbide thin films by pulsed laser irradiation. Applied Surface Science, 1996, 106, 193-197.	3.1	8
191	Conductivity effects in hydrogenated amorphous silicon induced by gamma-ray irradiation. , 1996, , 107-109.		O
192	Optical hysteresis and nonlinear light absorption in a-Si:H and a-SiC:H thin films. , 1995, , .		0
193	Adjustable Threshold a-Si/SiC:H Color Detectors. Materials Research Society Symposia Proceedings, 1995, 377, 785.	0.1	10
194	Current induced degradation in boronâ€doped hydrogenated amorphous silicon: A novel investigation technique. Journal of Applied Physics, 1995, 77, 1133-1136.	1.1	8
195	Amorphous Si/SiC threeâ€color detector with adjustable threshold. Applied Physics Letters, 1995, 66, 1178-1180.	1.5	47
196	Amorphous silicon/silicon carbide photodiodes with excellent sensitivity and selectivity in the vacuum ultraviolet spectrum. Applied Physics Letters, 1995, 67, 335-337.	1.5	31
197	Bias Controlled Amorphous Si/SiC:H Photodetectors. Solid State Phenomena, 1995, 44-46, 943-956.	0.3	5
198	On the electrical properties of polycrystalline diamond films on silicon. Diamond and Related Materials, 1995, 4, 628-631.	1.8	22

#	Article	IF	Citations
199	Tunable photodetectors based on amorphous Si/SiC heterostructures. IEEE Transactions on Electron Devices, 1995, 42, 835-840.	1.6	37
200	Characterization of intrinsicaâ€Si:H inpâ€iâ€ndevices by capacitance measurements: Theory and experiments. Journal of Applied Physics, 1994, 76, 3534-3541.	1.1	27
201	A systematic investigation of the role of material parameters in metastability of hydrogenated amorphous silicon. Journal of Non-Crystalline Solids, 1994, 170, 278-286.	1.5	17
202	Anisotropy of Porous Anodization of Aluminum for VLSI Technology. Journal of the Electrochemical Society, 1994, 141, 2556-2559.	1.3	33
203	Evidence of Energy Relaxation of Charged Defects in Amorphous Silicon Via Forward Bias Capacitance Measurements. Materials Research Society Symposia Proceedings, 1994, 336, 201.	0.1	0
204	a-Si:H/a-SiC:H Heterostructure for Bias-Controlled Photodetectors. Materials Research Society Symposia Proceedings, 1994, 336, 885.	0.1	18
205	Anisotropy of Aluminum Porous Anodization Process for Vlsi Planar Metallization. Materials Research Society Symposia Proceedings, 1994, 337, 651.	0.1	2
206	Fabrication of Photoluminescent Amorphous Pillar Silicon Structures. Materials Research Society Symposia Proceedings, 1994, 358, 93.	0.1	3
207	Laser and thermal processing for Ti:LiNbO3 waveguide fabrication. Applied Physics A: Solids and Surfaces, 1993, 56, 349-351.	1.4	1
208	Two dimensional image sensors based on amorphous silicon alloy p-i-n diodes. Journal of Non-Crystalline Solids, 1993, 164-166, 789-792.	1.5	7
209	Design, realization and characterization of mesa insulated a-Si bulk barrier phototransistor. Journal of Non-Crystalline Solids, 1993, 164-166, 805-808.	1.5	12
210	Structural, optical and electronic properties of wide band gap amorphous carbon-silicon alloys. Diamond and Related Materials, 1993, 2, 773-777.	1.8	29
211	Correlation Between Minority Carrier Diffusion Length and Microstructure in a-Si:H Thin Films. Materials Research Society Symposia Proceedings, 1993, 297, 485.	0.1	1
212	On the Role of the Staebler-WronSki Susceptibility in Hydrogenated Amorphous Silicon. Materials Research Society Symposia Proceedings, 1993, 297, 583.	0.1	2
213	Laser in-diffusion of Ti in LiNbO3 single crystals. Applied Surface Science, 1992, 54, 401-404.	3.1	1
214	Effect of deep-trap level on transverse acoustoelectric voltage measurements. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1991, 38, 503-509.	1.7	4
215	An equivalent circuit model for transverse acoustoelectric voltage measurements in semiconductors. Solid-State Electronics, 1990, 33, 1005-1012.	0.8	3
216	New measurement structure for TAV testing of semiconductor: an experimental analysis. , 0, , .		2

#	Article	IF	CITATIONS
217	Effect of SAW frequency on transverse acoustoelectric voltage measurements. , 0, , .		3
218	A new improved procedure for the determination of surface trap levels' density using transverse acoustoelectric voltage measurements. , 0, , .		1
219	Monitoring of a-Si:H p-i-n light induced degradation by low temperature AC conductance. , 0, , .		O
220	Towards an hydrogenated amorphous silicon phototransistor cellular neural network., 0,,.		1