List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7149955/publications.pdf Version: 2024-02-01

ΗΙΠΕΜΙΚΑΤΟ

#	Article	IF	CITATIONS
1	Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nature Materials, 2003, 2, 661-663.	13.3	514
2	Structural heterogeneities and mechanical behavior of amorphous alloys. Progress in Materials Science, 2019, 104, 250-329.	16.0	428
3	Ultra-high strength above 5000 MPa and soft magnetic properties of Co–Fe–Ta–B bulk glassy alloys. Acta Materialia, 2004, 52, 1631-1637.	3.8	226
4	Bulk-Nanoporous-Silicon Negative Electrode with Extremely High Cyclability for Lithium-Ion Batteries Prepared Using a Top-Down Process. Nano Letters, 2014, 14, 4505-4510.	4.5	208
5	Novel Co-rich high performance twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) high-entropy alloys. Scripta Materialia, 2019, 165, 39-43.	2.6	200
6	Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter. Intermetallics, 2011, 19, 1546-1554.	1.8	198
7	Dealloying by metallic melt. Materials Letters, 2011, 65, 1076-1078.	1.3	193
8	Full strength compacts by extrusion of glassy metal powder at the supercooled liquid state. Applied Physics Letters, 1995, 67, 2008-2010.	1.5	169
9	Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 689, 122-133.	2.6	166
10	Structure and properties of ultrafine-grained CoCrFeMnNi high-entropy alloys produced by mechanical alloying and spark plasma sintering. Journal of Alloys and Compounds, 2017, 698, 591-604.	2.8	165
11	Novel Co-rich high entropy alloys with superior tensile properties. Materials Research Letters, 2019, 7, 82-88.	4.1	139
12	Synthesis and Mechanical Properties of Bulk Amorphous Zr–Al–Ni–Cu Alloys Containing ZrC Particles. Materials Transactions, JIM, 1997, 38, 793-800.	0.9	137
13	Development of strong and ductile metastable face-centered cubic single-phase high-entropy alloys. Acta Materialia, 2019, 181, 318-330.	3.8	134
14	Investigation of Ti–Fe–Co bulk alloys with high strength and enhanced ductility. Acta Materialia, 2005, 53, 2009-2017.	3.8	130
15	Newtonian to non-Newtonian master flow curves of a bulk glass alloy Pd40Ni10Cu30P20. Applied Physics Letters, 1998, 73, 3665-3667.	1.5	129
16	Fragility and thermal stability of Pt- and Pd-based bulk glass forming liquids and their correlation with deformability. Scripta Materialia, 2006, 54, 2023-2027.	2.6	116
17	Free-volume-induced enhancement of plasticity in a monolithic bulk metallic glass at room temperature. Scripta Materialia, 2008, 59, 75-78.	2.6	116
18	Nanoscale multistep shear band formation by deformation-induced nanocrystallization in Zr-Al-Ni-Pd bulk metallic glass. Applied Physics Letters, 2005, 87, 151907.	1.5	115

#	Article	IF	CITATIONS
19	High strength and good ductility of Zr55Al10Ni5Cu30 bulk glass containing ZrC particles. Scripta Materialia, 2000, 43, 503-507.	2.6	109
20	Voronoi analysis of the structure of Cu–Zr and Ni–Zr metallic glasses. Intermetallics, 2006, 14, 893-897.	1.8	108
21	Imaging of 3D morphological evolution of nanoporous silicon anode in lithium ion battery by X-ray nano-tomography. Nano Energy, 2018, 52, 381-390.	8.2	101
22	Relationship between thermal expansion coefficient and glass transition temperature in metallic glasses. Scripta Materialia, 2008, 58, 1106-1109.	2.6	95
23	Newtonian and non-Newtonian viscosity of supercooled liquid in metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 674-678.	2.6	93
24	Nano- to submicro-porous β-Ti alloy prepared from dealloying in a metallic melt. Scripta Materialia, 2011, 65, 532-535.	2.6	93
25	Cu–Hf–Ti–Ag–Ta bulk metallic glass composites and their properties. Acta Materialia, 2005, 53, 2037-2048.	3.8	92
26	Three-dimensional open-cell macroporous iron, chromium and ferritic stainless steel. Scripta Materialia, 2013, 68, 723-726.	2.6	89
27	High-strength binary Ti–Fe bulk alloys with enhanced ductility. Journal of Materials Research, 2004, 19, 3600-3606.	1.2	82
28	Preparation of three-dimensional nanoporous Si using dealloying by metallic melt and application as a lithium-ion rechargeable battery negative electrode. Journal of Power Sources, 2016, 306, 8-16.	4.0	81
29	Work-Hardening Induced Tensile Ductility of Bulk Metallic Glasses via High-Pressure Torsion. Scientific Reports, 2015, 5, 9660.	1.6	80
30	Optimizing niobium dealloying with metallic melt to fabricate porous structure for electrolytic capacitors. Acta Materialia, 2015, 84, 497-505.	3.8	72
31	Is Cu60Ti10Zr30 a bulk glass-forming alloy?. Applied Physics Letters, 2003, 82, 4041-4043.	1.5	71
32	Enhance the thermal stability and glass forming ability of Al-based metallic glass by Ca minor-alloying. Intermetallics, 2012, 29, 35-40.	1.8	71
33	High strength and ductile binary Ti–Fe composite alloy. Journal of Alloys and Compounds, 2004, 384, L1-L3.	2.8	70
34	High-strength Cu-based crystal-glassy composite with enhanced ductility. Applied Physics Letters, 2004, 84, 1088-1089.	1.5	69
35	Kinetics of formation and coarsening of nanoporous \hat{I} ±-titanium dealloyed with Mg melt. Journal of Applied Physics, 2013, 114, .	1.1	64
36	Metalloid substitution elevates simultaneously the strength and ductility of face-centered-cubic high-entropy alloys. Acta Materialia, 2022, 225, 117571.	3.8	64

#	Article	IF	CITATIONS
37	Beating Thermal Coarsening in Nanoporous Materials via Highâ€Entropy Design. Advanced Materials, 2020, 32, e1906160.	11.1	61
38	Open porous dealloying-based biomaterials as a novel biomaterial platform. Materials Science and Engineering C, 2018, 88, 95-103.	3.8	60
39	Three-dimensional bicontinuous porous graphite generated in low temperature metallic liquid. Carbon, 2016, 96, 403-410.	5.4	56
40	Excellent Thermal Stability and Bulk Glass Forming Ability of Fe-B-Nb-Y Soft Magnetic Metallic Glass. Materials Transactions, 2008, 49, 506-512.	0.4	52
41	Vogel–Fulcher–Tammann plot for viscosity scaled with temperature interval between actual and ideal glass transitions for metallic glasses in liquid and supercooled liquid states. Intermetallics, 2010, 18, 406-411.	1.8	52
42	Characteristics of the Structural and Johari–Goldstein Relaxations in Pd-Based Metallic Glass-Forming Liquids. Journal of Physical Chemistry B, 2014, 118, 3720-3730.	1.2	52
43	High Tensile Strength Bulk Glassy Alloy Zr ₆₅ Al ₁₀ Ni ₁₀ Cu _{15Prepared by Extrusion of Atomized Glassy Powder. Materials Transactions, JIM, 1996, 37, 70-77.}	B &.g t;	51
44	High specific strength Mg-based bulk metallic glass matrix composite highly ductilized by Ti dispersoid. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 494, 299-303.	2.6	51
45	Preparation of hierarchical porous metals by two-step liquid metal dealloying. Scripta Materialia, 2018, 142, 101-105.	2.6	51
46	Fabrication and soft-magnetic properties of Fe–B–Nb–Y glassy powder compacts by spark plasma sintering technique. Intermetallics, 2009, 17, 218-221.	1.8	48
47	Synthesis and Mechanical Properties of Zr ₅₅ Al ₁₀ Ni ₅ Cu _{30Bulk Glass Composites Containing ZrC Particles Formed by the <i>In-Situ</i> Reaction. Materials Transactions, JIM, 2000, 41, 1454-1459.}	8> 9.9	46
48	Evolution of a bicontinuous nanostructure via a solid-state interfacial dealloying reaction. Scripta Materialia, 2016, 118, 33-36.	2.6	46
49	Nanoporous magnesium. Nano Research, 2018, 11, 6428-6435.	5.8	46
50	Origin of nondetectable x-ray diffraction peaks in nanocomposite CuTiZr alloys. Applied Physics Letters, 2003, 83, 3299-3301.	1.5	45
51	Influence of nanoprecipitation on strength of Cu60Zr30Ti10 glass containing μm-ZrC particle reinforcements. Scripta Materialia, 2004, 51, 577-581.	2.6	45
52	Impact of the structural state on the mechanical properties in a Zr–Co–Al bulk metallic glass. Journal of Alloys and Compounds, 2014, 607, 139-149.	2.8	45
53	Effect of Cu on nanocrystallization and plastic properties of FeSiBPCu bulk metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2598-2602.	2.6	42
54	The effect of nanoquasicrystals on mechanical properties of as-extruded Mg–Zn–Cd alloy. Materials Letters, 2012, 79, 281-283.	1.3	42

#	Article	IF	CITATIONS
55	Influence of hydrostatic pressure during casting on as cast structure and mechanical properties in Zr65Al7.5Ni10Cu17.5â~xPdx (x=0, 17.5) alloys. Scripta Materialia, 2004, 51, 1063-1068.	2.6	41
56	Fe76Si9.6B8.4P6 glassy powder soft-magnetic cores with low core loss prepared by spark-plasma sintering. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1247-1250.	1.7	41
57	Three-Dimensional Morphological and Chemical Evolution of Nanoporous Stainless Steel by Liquid Metal Dealloying. ACS Applied Materials & Interfaces, 2017, 9, 34172-34184.	4.0	41
58	Porous Ti-based bulk metallic glass with excellent mechanical properties and good biocompatibility. Intermetallics, 2019, 105, 153-162.	1.8	41
59	High-strength hypereutectic Ti–Fe–Co bulk alloy with good ductility. Philosophical Magazine Letters, 2004, 84, 359-364.	0.5	40
60	Mo microalloying effect on the glass-forming ability, magnetic, mechanical and corrosion properties of (Fe0.76Si0.096B0.084P0.06)100-xMox bulk glassy alloys. Journal of Alloys and Compounds, 2011, 509, 7688-7691.	2.8	40
61	3D morphological evolution of porous titanium by x-ray micro- and nano-tomography. Journal of Materials Research, 2013, 28, 2444-2452.	1.2	39
62	Excellent creep properties of Mg–Zn–Cu–Gd-based alloy strengthened by quasicrystals and Laves phases. Journal of Materials Research, 2005, 20, 1278-1286.	1.2	38
63	Voronoi Analysis of the Structure of Ni-Zr-Al Ternary Metallic Glass. Materials Transactions, 2007, 48, 1698-1702.	0.4	38
64	On microstructural homogenization and mechanical properties optimization of biomedical Co-Cr-Mo alloy additively manufactured by using electron beam melting. Additive Manufacturing, 2019, 28, 215-227.	1.7	38
65	Anomalously low modulus of the interpenetrating-phase composite of Fe and Mg obtained by liquid metal dealloying. Scripta Materialia, 2019, 163, 133-136.	2.6	36
66	Sub-micron porous niobium solid electrolytic capacitor prepared by dealloying in a metallic melt. Materials Letters, 2014, 116, 223-226.	1.3	35
67	Development of a high-damping NiTi shape-memory-alloy-based composite. Materials Letters, 2015, 158, 1-4.	1.3	35
68	Effect of alloying elements on the microstructure and corrosion behavior of TiZr-based bulk metallic glasses. Corrosion Science, 2020, 177, 108854.	3.0	34
69	Development and microstructure optimization of Mg-based metallic glass matrix composites with in situ B2-NiTi dispersoids. Materials and Design, 2015, 83, 238-248.	3.3	33
70	High power diode laser cladding of Fe–Co–B–Si–C–Nb amorphous coating: Layered microstructure and properties. Surface and Coatings Technology, 2013, 235, 699-705.	2.2	32
71	Ir&İt;sub>26&İt;/sub>Mo&Itsub>20&It/sub>Rh&Itsub>22.5&It/sub>Ru&Itsub>20&It/sub and Ir&Itsub>25.5&It/sub>Mo&Itsub>20&It/sub>Rh&Itsub>20&It/sub>Ru&Itsub>25&It/sub Alloys Designed by Sandwich Strategy for the Valence Electron Concentration of Constituent	>W< >W<	sub>11.58 sub>9.5&l
72	Elements in the Periodic Chart. Materials Transactions, 2019, 60, 1666-1673. Septenary Zr–Hf–Ti–Al–Co–Ni–Cu high-entropy bulk metallic glasses with centimeter-scale glass-forming ability. Materialia, 2019, 7, 100372.	1.3	32

Нідемі Като

#	Article	IF	CITATIONS
73	Dynamic mechanical relaxation behavior of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass. Journal of Materials Science and Technology, 2021, 83, 248-255.	5.6	32
74	On structural relaxation and viscous work heating during non-Newtonian viscous flow in a Zr55Al10Ni5Cu30 bulk metallic glass. Acta Materialia, 2006, 54, 891-898.	3.8	31
75	Partial structure investigation of the traditional bulk metallic glass <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Pd</mml:mi><mm mathvariant="normal">P<mml:mn>20</mml:mn></mm </mml:msub></mml:mrow>. Physical Review B. 2019. 100</mml:math 	l:mn>401.1	nml;mn>
76	Solid Solutions with bcc, hcp, and fcc Structures Formed in a Composition Line in Multicomponent Ir–Rh–Ru–W–Mo System. Materials Transactions, 2019, 60, 2267-2276.	0.4	31
77	Thermal evidence of stress-induced structural disorder of a Zr55Al10Ni5Cu30 glassy alloy in the non-Newtonian region. Applied Physics Letters, 2001, 79, 60-62.	1.5	30
78	Vacancy clustering and relaxation behavior in rapidly solidified B2 FeAl ribbons. Acta Materialia, 2005, 53, 3751-3764.	3.8	30
79	Joining of Zr-based bulk metallic glasses using the friction welding method. Journal of Alloys and Compounds, 2007, 434-435, 102-105.	2.8	30
80	Submicron-porous NiTi and NiTiNb shape memory alloys with high damping capacity fabricated by a new top-down process. Materials & Design, 2015, 78, 74-79.	5.1	30
81	On the Potential of Bulk Metallic Glasses for Dental Implantology: Case Study on Ti40Zr10Cu36Pd14. Materials, 2018, 11, 249.	1.3	30
82	A strategy for enhancing the mechanical property of the precipitation-strengthened medium-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 819, 141390.	2.6	30
83	Shear banding behavior and fracture mechanisms of Zr55Al10Ni5Cu30 bulk metallic glass in uniaxial compression analyzed using a digital image correlation method. Intermetallics, 2013, 32, 21-29.	1.8	29
84	Work-hardenable Mg-based bulk metallic glass matrix composites reinforced by ex-situ porous shape-memory-alloy particles. Materials Letters, 2016, 183, 454-458.	1.3	29
85	Determination of density and vacancy concentration in rapidly solidified FeAl ribbons. Intermetallics, 2003, 11, 707-711.	1.8	28
86	Investigation of high strength metastable hypereutectic ternary Ti–Fe–Co and quaternary Ti–Fe–Co–(V, Sn) alloys. Journal of Alloys and Compounds, 2007, 434-435, 32-35.	2.8	28
87	Development of porous FeCo by liquid metal dealloying: Evolution of porous morphology and effect of interaction between ligaments and melt. Materials and Design, 2019, 180, 107908.	3.3	28
88	Microstructure evolution and deformation mechanism of α+β dual-phase Ti-xNb-yTa-2Zr alloys with high performance. Journal of Materials Science and Technology, 2022, 131, 68-81.	5.6	28
89	Transition from Linear to Nonlinear Viscoelasticity during Deformation in a Zr-based Glassy Alloy. Materials Transactions, JIM, 2000, 41, 1202-1207.	0.9	27
90	A Fictive Stress Model Calculation of Stress-Overshoot: A Nonlinear Viscoelastic Behavior in Metallic Glass. Japanese Journal of Applied Physics, 2000, 39, 1808-1811.	0.8	27

Нідемі Като

#	Article	IF	CITATIONS
91	Finite element analysis of compressive deformation of bulk metallic glasses. Acta Materialia, 2004, 52, 3813-3823.	3.8	26
92	Nanoporous High-Entropy Alloy by Liquid Metal Dealloying. Metals, 2020, 10, 1396.	1.0	26
93	2.3 GPa cryogenic strength through thermal-induced and deformation-induced body-centered cubic martensite in a novel ferrous medium entropy alloy. Scripta Materialia, 2021, 204, 114157.	2.6	26
94	Low-temperature acoustic properties and quasiharmonic analysis for Cu-based bulk metallic glasses. Physical Review B, 2007, 76, .	1.1	25
95	Consolidation and mechanical properties of Cu46Zr42Al7Y5 metallic glass by spark plasma sintering. Journal of Non-Crystalline Solids, 2012, 358, 1263-1267.	1.5	25
96	Heating and structural disordering effects of the nonlinear viscous flow in a Zr55Al10Ni5Cu30 bulk metallic glass. Applied Physics Letters, 2003, 83, 5401-5403.	1.5	24
97	Decoupling between calorimetric and dynamical glass transitions in high-entropy metallic glasses. Nature Communications, 2021, 12, 3843.	5.8	24
98	Regulation of strength and ductility of single-phase twinning-induced plasticity high-entropy alloys. Scripta Materialia, 2022, 216, 114738.	2.6	24
99	Effects of extrusion conditions on mechanical properties in ZrAlNiCu glassy powder compacts. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 219, 39-43.	2.6	23
100	A Fictive Stress Model Calculation of Nonlinear Viscoelastic Behaviors in a Zr-Based Glassy Alloy: Stress Growth and Relaxation. Japanese Journal of Applied Physics, 2000, 39, 5184-5187.	0.8	23
101	In situ phase separation and flow behavior in the glass transition region. Intermetallics, 2010, 18, 1235-1239.	1.8	23
102	Electrochemical behavior and biocompatibility of Ti-Fe-Cu alloy with high strength and ductility. Journal of Alloys and Compounds, 2017, 707, 291-297.	2.8	22
103	The influence of the formation of Fe3C on graphitization in a carbon-rich iron-amorphous carbon mixture processed by Spark Plasma Sintering and annealing. Ceramics International, 2017, 43, 11902-11906.	2.3	21
104	Hot Deformation and Dynamic Recrystallization Behavior of CoCrNi and (CoCrNi)94Ti3Al3 Medium Entropy Alloys. Metals, 2020, 10, 1341.	1.0	21
105	Beyond strength-ductility trade-off: 3D interconnected heterostructured composites by liquid metal dealloying. Composites Part B: Engineering, 2021, 225, 109266.	5.9	21
106	A Fictive Stress Model and Nonlinear Viscoelastic Behaviors in Metallic Glasses. Materials Transactions, 2001, 42, 597-605.	0.4	20
107	Effects of a small amount of Si or Ge addition on stability and hydrogen-induced internal friction of Ti34Zr11Cu47Ni8 glassy alloys. Acta Materialia, 2004, 52, 1799-1806.	3.8	20
108	Influences of hydrostatic pressure during casting and Pd contenton as-cast phase in Zr-Al-Ni-Cu-Pd bulk alloys. Applied Physics Letters, 2004, 85, 2205-2207.	1.5	20

#	Article	IF	CITATIONS
109	Heating rate dependence of Tg and Tx in Zr-based BMGs with characteristic structures. Journal of Alloys and Compounds, 2009, 483, 8-13.	2.8	20
110	Corrosion resistance of porous ferritic stainless steel produced by liquid metal dealloying of Incoloy 800. Corrosion Science, 2020, 166, 108468.	3.0	20
111	Strengthening of high-entropy alloys via modulation of cryo-pre-straining-induced defects. Journal of Materials Science and Technology, 2022, 129, 251-260.	5.6	20
112	Creep deformation and stress-induced structural disorder near Tg in a Zr55Al10Ni5Cu30 glassy alloy. Applied Physics Letters, 2001, 79, 4515-4517.	1.5	19
113	Suppression of quasicrystallization by nonlinear viscous flow in Zr–Al–Ni–Cu–Pd glassy alloys. Applied Physics Letters, 2002, 80, 4708-4710.	1.5	19
114	Nanoporous Surfaces of FeAl Formed by Vacancy Clustering. Materials Transactions, 2002, 43, 2897-2902.	0.4	19
115	Deformation behavior of Zr- and Ni-based bulk glassy alloys. Journal of Materials Research, 2007, 22, 1087-1092.	1.2	19
116	Thermal conductivity of an alloy in relation to the observed cooling rate and glass-forming ability. Philosophical Magazine, 2007, 87, 1845-1854.	0.7	19
117	Glass formation dependence on casting-atmosphere pressure in Zr65Al7.5Ni10Cu17.5â^'xPdx (x=0–17.5) alloy system: A resultant effect of quasicrystalline phase transformation and cooling mechanism during mold-casting process. Journal of Applied Physics, 2008, 103, 044907.	1.1	19
118	Static heterogeneity in metallic glasses and its correlation to physical properties. Journal of Non-Crystalline Solids, 2011, 357, 494-500.	1.5	19
119	Fabrication and mechanical properties of bulk metallic glass matrix composites by in-situ dealloying method. Journal of Alloys and Compounds, 2017, 707, 332-336.	2.8	19
120	Microstructure characterization by X-ray tomography and EBSD of porous FeCr produced by liquid metal dealloying. Materials Characterization, 2018, 144, 166-172.	1.9	19
121	Surface Functionalization of Biomedical Ti-6Al-7Nb Alloy by Liquid Metal Dealloying. Nanomaterials, 2020, 10, 1479.	1.9	19
122	Microstructures and mechanical properties of TiC-particulate-reinforced Ti–Mo–Al intermetallic matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 790, 139523.	2.6	19
123	Bulk glassy Zr-based alloys prepared by consolidation of glassy alloy powders in supercooled liquid region. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 226-228, 458-462.	2.6	18
124	Crystallization of Zr ₅₅ Al ₁₀ Ni ₅ Cu ₃₀ Bulk Metallic Glass Composites Containing ZrC Particles. Materials Transactions, 2002, 43, 1-4.	0.4	18
125	Investigation of mechanical properties and devitrification of Cu-based bulk glass formers alloyed with noble metals. Science and Technology of Advanced Materials, 2003, 4, 327-331.	2.8	18
126	A metallic glass grating for X-ray grating interferometers fabricated by imprinting. Applied Physics Express, 2014, 7, 032501.	1.1	18

#	Article	IF	CITATIONS
127	Development of in-situ β-Ti reinforced Be-free Ti–based bulk metallic glass matrix composites. Journal of Alloys and Compounds, 2017, 714, 120-125.	2.8	18
128	Mechanical properties and microstructural change in (Cu–Fe) immiscible metal matrix composite: Effect of Mg on secondary phase separation. Journal of Materials Research and Technology, 2020, 9, 15989-15995.	2.6	18
129	Hydrogen-induced internal friction of Zr-based bulk glassy alloys in a rod shape above 90 K. Journal of Alloys and Compounds, 2004, 365, 221-227.	2.8	17
130	Origin of the Effect of the Gas Atmosphere during Mold-Casting Zr ₆₅ Al _{7.5} Ni ₁₀ Pd _{17.5} Bulk Glassy or Nano-Quasicrystal-Forming Alloy. Materials Transactions, 2007, 48, 1266-1271.	0.4	17
131	Effect of Al Addition on Superelastic Properties of Aged Ti–Nb–Zr–Al Quaternary Alloys. Materials Transactions, 2012, 53, 1981-1985.	0.4	17
132	Correlation between the enhanced plasticity of glassy matrix composites and the intrinsic mechanical property of reinforcement. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 560, 40-46.	2.6	17
133	Ti–Ag–Pd alloy with good mechanical properties and high potential for biological applications. Scientific Reports, 2016, 6, 25142.	1.6	17
134	Effect of substituting elements on thermal stability and glass-forming ability of an Al-based Al Ni Er metallic glass. Journal of Alloys and Compounds, 2017, 707, 97-101.	2.8	17
135	Characterization of nanoscale detonation carbon produced in a pulse gas-detonation device. Diamond and Related Materials, 2020, 101, 107553.	1.8	17
136	Anomalous compliance of interpenetrating-phase composite of Ti and Mg synthesized by liquid metal dealloying. Scripta Materialia, 2021, 194, 113660.	2.6	17
137	Damping properties of hydrogen-absorbed rod metallic glasses. Journal of Alloys and Compounds, 2003, 355, 37-41.	2.8	16
138	Improved plasticity of iron-based high-strength bulk metallic glasses by copper-induced nanocrystallization. Journal of Non-Crystalline Solids, 2011, 357, 3002-3005.	1.5	16
139	Mg-based metallic glass matrix composite with in situ porous titanium dispersoids by dealloying in metallic melt. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 582, 76-83.	2.6	16
140	Volume and Enthalpy Relaxation in Pd _{42.5} Cu ₃₀ Ni _{7.5} P _{20Bulk Metallic Glass. Materials Transactions, 2014, 55, 466-472.}	ig t) .4	16
141	Early science commissioning results of the sub-micron resolution X-ray spectroscopy beamline (SRX) in the field of materials science and engineering. AIP Conference Proceedings, 2016, , .	0.3	16
142	Porous NiTi Particle Dispersed Mg-Zn-Ca Bulk Metallic Glass Matrix Composites. Materials, 2018, 11, 1959.	1.3	16
143	Formation of Metallic Glass Coatings by Detonation Spraying of a Fe66Cr10Nb5B19 Powder. Metals, 2019, 9, 846.	1.0	16
144	Transformation mechanisms and governing orientation relationships through selective dissolution of Ni via liquid metal dealloying from (FeCo)xNi100â^'x precursors. Materials and Design, 2020, 185, 108271.	3.3	16

#	Article	IF	CITATIONS
145	Improving glass forming ability of off-eutectic metallic glass formers by manipulating primary crystallization reactions. Acta Materialia, 2020, 200, 710-719.	3.8	16
146	Novel Co-Cu-Based Immiscible Medium-Entropy Alloys with Promising Mechanical Properties. Metals, 2021, 11, 238.	1.0	16
147	Harnessing elastic anisotropy to achieve low-modulus refractory high-entropy alloys for biomedical applications. Materials and Design, 2022, 215, 110430.	3.3	16
148	Structure and mechanical properties of cast quasicrystal-reinforced Mg–Zn–Al–Y base alloys. Journal of Materials Research, 2004, 19, 1531-1538.	1.2	15
149	Influence of thermal conductivity on the glass-forming ability of Ni-based and Cu-based alloys. Applied Physics Letters, 2006, 88, 251902.	1.5	15
150	Elastic inhomogeneity and acoustic phonons in Pd-, Pt-, and Zr-based metallic glasses. Physical Review B, 2010, 81, . Thermodynamic approach to glass forming ability of water openched Pd P based and small math	1.1	15
151	xmlns:mml="http://www.w3.org/1998/Math/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mi mathvariant="bold">Pt<mml:mrow><mml:mn>60</mml:mn></mml:mrow></mml:mi </mml:msub><mml:msub> mathvariant="bold">Ni<mml:mrow><mml:mn>15</mml:mn></mml:mrow></mml:msub> mathvariant="bold">P<mml:mrow><mml:mn>25</mml:mn></mml:mrow></mml:mrow> <	<mml:mi <mml:mi <td>15 th>bulk</td></mml:mi </mml:mi 	15 th>bulk
152	metallic glasses. Physical Review B, 2011, 83, . Bulk metallic glasses based on precious metals: Thermal treatments and mechanical properties. Intermetallics, 2015, 63, 73-79.	1.8	15
153	Viscoelasticity of Cu- and La-based bulk metallic glasses: Interpretation based on the quasi-point defects theory. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 719, 164-170.	2.6	15
154	Interaction of a Ti–Cu Alloy with Carbon: Synthesis of Composites and Model Experiments. Materials, 2019, 12, 1482.	1.3	15
155	Ordering kinetics of nanoporous FeCo during liquid metal dealloying and the development of nanofacets. Scripta Materialia, 2020, 177, 38-43.	2.6	15
156	Formation of 2–5 nm size pre-precipitates of cF96 phase in a Hf–Co–Al glassy alloy. Journal of Alloys and Compounds, 2003, 359, 198-201.	2.8	14
157	Friction Welding of Zr ₅₅ Al ₁₀ Ni ₅ Cu ₃₀ Bulk Metallic Glasses. Materials Transactions, 2005, 46, 2768-2772.	0.4	14
158	Comparative Study on Glassy Phase Stabilities of Zr–Co–Al and Zr–Ni–Al Metallic Glasses. Materials Transactions, 2005, 46, 2785-2790.	0.4	14
159	Topological characterization of metallic glasses by neutron diffraction and RMC modeling. Physica B: Condensed Matter, 2006, 385-386, 259-262.	1.3	14
160	Deformation-Induced Nanoscale Dynamic Transformation Studies in Zr-Al-Ni-Pd and Zr-Al-Ni-Cu Bulk Metallic Glasses. Materials Transactions, 2007, 48, 1327-1335.	0.4	14
161	Phase transformation behaviour in continuously cooled Zr ₆₅ Al _{7.5} Ni ₁₀ Cu _{17.5â^'} <i>_x</i> Pd <i>< glass-forming alloys and consequences for structure and property control. Philosophical Magazine, 2008. 88. 1125-1136.</i>	sub>x0.7	ub>(<i>14</i>
162	Cooling Process and Cast Structure of Zr-Al-Ni-Cu–Based Bulk Metallic Glasses Produced in Various Atmospheres. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 1450-1455.	1.1	14

#	Article	IF	CITATIONS
163	Effect of cobalt microalloying on the glass forming ability of Ti–Cu–Pd–Zr metallic glass. Journal of Non-Crystalline Solids, 2013, 379, 155-160.	1.5	14
164	Formation of TiC-Cu nanocomposites by a reaction between Ti25Cu75 melt-spun alloy and carbon. Materials Letters, 2019, 235, 104-106.	1.3	14
165	Composition design, synthesis and hydrogen storage ability of multi-principal-component alloy TiVZrNbTa. Journal of Alloys and Compounds, 2022, 901, 163638.	2.8	14
166	Stability and hydrogen-induced internal friction of Ti-rich multicomponent glassy alloys. Journal of Alloys and Compounds, 2004, 372, 116-120.	2.8	13
167	Development of Multi-colored Neutron Talbot–Lau Interferometer with Absorption Grating Fabricated by Imprinting Method of Metallic Glass. Journal of the Physical Society of Japan, 2017, 86, 044001.	0.7	13
168	A new, toxic element-free Mg-based metallic glass for biomedical applications. Journal of Non-Crystalline Solids, 2018, 481, 397-402.	1.5	13
169	Low cost high specific surface architectured nanoporous metal with corrosion resistance produced by liquid metal dealloying from commercial nickel superalloy. Scripta Materialia, 2019, 163, 5-8.	2.6	13
170	Novel hierarchical nanoporous graphene nanoplatelets with excellent rate capabilities produced via self-templating liquid metal dealloying. Materials Today Communications, 2020, 24, 101120.	0.9	13
171	Evolution of 3D interconnected composites of high-entropy TiVNbMoTa alloys and Mg during liquid metal dealloying. Composites Part B: Engineering, 2021, 222, 109044.	5.9	13
172	Superior phase transformation-assisted mechanical properties of a metastable medium-entropy ferrous alloy with heterogeneous microstructure. Materials Letters, 2021, 302, 130391.	1.3	13
173	Phase-field investigation of the coarsening of porous structures by surface diffusion. Physical Review Materials, 2019, 3, .	0.9	13
174	Mechanical Property and Corrosion Resistance Evaluations of Ti-6Al-7Nb Alloy Brazed with Bulk Metallic Glasses. Materials Transactions, 2007, 48, 2235-2243.	0.4	12
175	Formation of Zr66.7Al11.1Ni22.2 noncrystalline alloys demonstrated by molecular dynamics simulations based on distorted plastic crystal model. Intermetallics, 2008, 16, 819-826.	1.8	12
176	Investigation of structure–mechanical properties relations of dual-axially forged Ti-based low-alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 632, 88-95.	2.6	12
177	Insight on the process ability of bulk metallic glasses by thermo-mechanical analysis and dynamic mechanical analysis. Journal of Alloys and Compounds, 2015, 628, 357-363.	2.8	12
178	High aspect ratio grating by isochronal imprinting of less viscous workable Gd-based metallic glass for neutron phase imaging. Intermetallics, 2016, 78, 55-63.	1.8	12
179	Effect of B2-ordered phase on the deformation behavior of Ti-Mo-Al alloys at elevated temperature. Journal of Alloys and Compounds, 2017, 696, 130-135.	2.8	12
180	Effect of dealloying rate on transformation behavior during liquid metal dealloying. Journal of Alloys and Compounds, 2020, 831, 154733.	2.8	12

#	Article	IF	CITATIONS
181	Microstructure Refinement of a Transformation-Induced Plasticity High-Entropy Alloy. Materials, 2021, 14, 1196.	1.3	12
182	High strength and ductile bulk Ti–Ni–Cu–Nb alloy with submicron-size structure units obtained by arc-melting. Journal of Alloys and Compounds, 2004, 375, 171-174.	2.8	11
183	Evidence for effect of hydrostatic pressure during casting on glass-forming ability in Zr65Al7.5Ni10Cu17.5â^'xPdx (x=0–17.5) alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 903-906.	2.6	11
184	Another clue to understand the yield phenomenon at the glassy state in a Zr55Al10Ni5Cu30 metallic glass. Materials Letters, 2008, 62, 1592-1594.	1.3	11
185	Imprinting of Metallic Glasses: A Simple Approach to Making Durable Terahertz High-Pass Filters. Applied Physics Express, 2012, 5, 012201.	1.1	11
186	The study on interface and property of TiNb/Zr-based metallic glassy composite fabricated by SPS. Journal of Non-Crystalline Solids, 2015, 426, 83-87.	1.5	11
187	Enhanced wear resistivity of a Zr-based bulk metallic glass processed by high-pressure torsion under reciprocating dry conditions. Metals and Materials International, 2016, 22, 383-390.	1.8	11
188	Cold-rolling influence on microstructure and mechanical properties of NiCr - Ag composites and porous NiCr obtained by liquid metal dealloying. Journal of Alloys and Compounds, 2017, 707, 251-256.	2.8	11
189	Effect of the cooling rate on the mechanical properties of Ti-Ni-Cu-Zr-based crystal/glassy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 704, 147-153.	2.6	11
190	Mechanical properties, electrochemical behavior and biocompatibility of the Ti-based low-alloys containing a minor fraction of noble metals. Journal of Alloys and Compounds, 2018, 732, 915-921.	2.8	11
191	A Ni-, Al-, Be-free Zr-based metallic glass for biomedical applications. Journal of Non-Crystalline Solids, 2018, 500, 78-83.	1.5	11
192	Microstructure and corrosion study of Fe-based bulk metallic glass obtained by spark plasma sintering. Journal of Alloys and Compounds, 2021, 880, 160399.	2.8	11
193	Sluggish dynamics of homogeneous flow in high-entropy metallic glasses. Scripta Materialia, 2022, 214, 114673.	2.6	11
194	Modeling of stress–strain curves for Pd40Ni10Cu30P20 glass alloy under constant strain-rate deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 758-762.	2.6	10
195	Microforming of Bulk Metallic Glasses: Constitutive Modelling and Applications. Materials Transactions, 2004, 45, 1228-1232.	0.4	10
196	Characteristics of Shear Bands and Fracture Surfaces of Zr ₆₅ Al _{7.5} Ni ₁₀ Pd _{17.5} Bulk Metallic Glass. Materials Transactions, 2005, 46, 2870-2874.	0.4	10
197	Evaluation of residual stress and deformation behavior on Zr55Al10Ni5Cu30 bulk metallic glass containing ZrC particles using neutron diffraction. Scripta Materialia, 2009, 60, 725-728.	2.6	10
198	Selective growth of silver particles on the facets of synthetic diamond. CrystEngComm, 2016, 18, 7430-7434.	1.3	10

#	Article	IF	CITATIONS
199	Decreasing activation energy of fast relaxation processes in a metallic glass during aging. Physical Review B, 2019, 99, .	1.1	10
200	The atomic structure of a bulk metallic glass resolved by scanning tunneling microscopy and ab-initio molecular dynamics simulation. Journal of Alloys and Compounds, 2020, 816, 152680.	2.8	10
201	Mg-Based Metallic Glass-Polymer Composites: Investigation of Structure, Thermal Properties, and Biocompatibility. Metals, 2020, 10, 867.	1.0	10
202	Experimental and molecular dynamics studies of phase transformations during cryogenic thermal cycling in complex TiNi-based crystalline/amorphous alloys. Journal of Alloys and Compounds, 2021, 854, 155379.	2.8	10
203	Temperature- and strain-dependent thermally-activated deformation mechanism of a ferrous medium-entropy alloy. Intermetallics, 2021, 134, 107202.	1.8	10
204	Heat of evolution and structural analysis on the non-Newtonian viscous flow of Pd40Ni40P20 glassy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 444-448.	2.6	9
205	Softening and heating behaviors during the nonlinear viscous flow in a Zr-based bulk metallic glass. Journal of Non-Crystalline Solids, 2007, 353, 3764-3768.	1.5	9
206	Improvement of Plasticity in Pd Containing Zr-Al-Ni-Cu Bulk Metallic Glass by Deformation-Induced Nano Structure Change. Materials Transactions, 2008, 49, 2732-2736.	0.4	9
207	Tailoring Thermally Induced Nano-Quasicrystallization and Deformation-Assisted Nanocrystallization for Mechanical Property Improvement in Zr-Al-Ni-Cu-Pd Bulk Metallic Glasses. Materials Transactions, 2009, 50, 2079-2086.	0.4	9
208	Mechanical Properties of Soft Magnetic (Fe _{0.76} Si _{0.096} B _{0.084} P _{ (<i>x</i>=0 and 0.1) Bulk Glassy Alloys. Materials Transactions, 2009, 50, 1286-1289.}	0.06&#t;/SI	JB>) <sl< td=""></sl<>
209	Atomic-Scale Characterization of Elastic Deformation of Zr-Based Metallic Glass under Tensile Stress. Materials Transactions, 2010, 51, 1381-1385.	0.4	9
210	Viscous flow of Cu55Zr30Ti10Co5 bulk metallic glass in glass-transition and semi-solid regions. Scripta Materialia, 2013, 68, 219-222.	2.6	9
211	Dynamic Relaxation of Pd42.5Ni7.5Cu30P20 Metallic Glass. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2013, 60, 228-235.	0.1	9
212	Phonon dispersion of metallic glass CuZr ₂ . Journal of Physics: Conference Series, 2007, 92, 012136.	0.3	8
213	Hot Pressing Consolidation Mechanisms of Bulk Metallic Glass Powders. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2007, 54, 761-767.	0.1	8
214	Effect of Nd-rich phase on c-axis orientation of Nd–Fe–B melt-spun magnet and its domain structure. Journal of Magnetism and Magnetic Materials, 2007, 310, 2572-2574.	1.0	8
215	Correlation of dynamic and quasistatic relaxations: The Cox–Merz rule for metallic glass. Applied Physics Letters, 2009, 95, .	1.5	8
216	Constitutive model for high temperature deformation behavior of Ti–Zr–Ni–Be bulk metallic glass in supercooled liquid region. Computational Materials Science, 2012, 61, 213-223.	1.4	8

#	Article	IF	CITATIONS
217	X-ray phase imaging using a Gd-based absorption grating fabricated by imprinting technique. Japanese Journal of Applied Physics, 2016, 55, 048003.	0.8	8
218	Enlarging the surface area of an electrolytic capacitor of porous niobium by Mg Ce eutectic liquid dealloying. Scripta Materialia, 2016, 122, 68-71.	2.6	8
219	High-temperature mechanical behavior of B2-ordered Ti–Mo–Al alloys. Intermetallics, 2020, 117, 106675.	1.8	8
220	Mechanical Properties of FeCrâ€Based Composite Materials Elaborated by Liquid Metal Dealloying towards Bioapplication. Advanced Engineering Materials, 2020, 22, 2000381.	1.6	8
221	Hierarchical heterostructured FeCr–(Mg–Mg2Ni) composite with 3D interconnected and lamellar structures synthesized by liquid metal dealloying. Journal of Materials Research and Technology, 2021, 15, 4573-4579.	2.6	8
222	Analysis of the anelastic deformation of high-entropy Pd20Pt20Cu20Ni20P20 metallic glass under stress relaxation and recovery. Journal of Materials Science and Technology, 2022, 107, 82-91.	5.6	8
223	Solid solution induced back-stress in multi-principal element alloys: Experiment and modeling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 835, 142621.	2.6	8
224	Magnetic properties of (Ni1-xMnx)1.9Ge Alloys. Journal of Magnetism and Magnetic Materials, 1998, 177-181, 1417-1418.	1.0	7
225	Stability and electronic structure of Zr-based ternary metallic glasses and relevant compounds. Journal of Alloys and Compounds, 2007, 434-435, 149-151.	2.8	7
226	Densification Control in Hot Pressing of Metallic Glass Powders. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2008, 55, 709-714.	0.1	7
227	A partial structure factor investigation of the bulk metallic glass Zr ₆₃ Ni ₂₅ Al ₁₂ as studied by using a combination of anomalous X-ray scattering and reverse Monte Carlo modeling. International Journal of Materials Research, 2012, 103, 1108-1112.	0.1	7
228	Development of Open-Cell Porous Metals and Alloys with Base and Half Metal Elements. Materia Japan, 2013, 52, 395-403.	0.1	7
229	Multiwalled carbon nanotube forests grown on the surface of synthetic diamond crystals. Ceramics International, 2017, 43, 10606-10609.	2.3	7
230	Three dimensional analysis of nanoporous silicon particles for Li-ion batteries. Materials Characterization, 2017, 124, 165-170.	1.9	7
231	The mechanical cycling behavior of TiNi based crystal/glassy alloy in the superelastic mode. Journal of Alloys and Compounds, 2018, 768, 176-180.	2.8	7
232	New Ti/β-Ti alloy laminated composite processed by powder metallurgy: Microstructural evolution and mechanical property. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 822, 141702.	2.6	7
233	Fabrication of multi-blade crystals for hard-X-ray multi-beam imaging system. Japanese Journal of Applied Physics, 2020, 59, 092001.	0.8	7
234	Role of Fe substitution for Co on thermal stability and glass-forming ability of soft magnetic Co-based Co-Fe-B-P-C metallic glasses. Intermetallics, 2022, 147, 107598.	1.8	7

#	Article	IF	CITATIONS
235	Heat of Evolution and Non-Newtonian Viscous Flow of Pd40Ni40P20Glassy Alloy. Japanese Journal of Applied Physics, 2002, 41, 741-745.	0.8	6
236	Plastic deformation by glassy structure control in Zr–Al–Ni–Cu-based BMGs. Journal of Alloys and Compounds, 2010, 504, S52-S55.	2.8	6
237	Deformation-induced structural transformation leading to compressive plasticity in Zr ₆₅ Al _{7.5} Ni ₁₀ Cu _{12.5} M ₅ (M = Nb, Pd) glassy alloys. Journal of Materials Research, 2010, 25, 1149-1158.	1.2	6
238	Evaluation of compressive deformation behavior of Zr55Al10Ni5Cu30 bulk metallic glass containing ZrC particles by synchrotron X-ray diffraction. Scripta Materialia, 2012, 66, 801-804.	2.6	6
239	Enhanced Mechanical Properties by Cyclic Compression in TiNb/Zr-Based Metallic Glassy Composite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 4595-4600.	1.1	6
240	The effect of matrix fracture toughness on the plastic deformation of the metallic glassy composite. Journal of Alloys and Compounds, 2014, 612, 10-15.	2.8	6
241	Mechanical properties, structure, and biocompatibility of dual-axially forged Ti 94 Fe 3 Au 3 , Ti 94 Fe 3 Nb 3 , Nb 3 , and Ti 94 Au 3 Nb 3 alloys. Journal of Alloys and Compounds, 2017, 707, 269-274.	2.8	6
242	Nano-imprinting potential of magnetic FeCo-based metallic glass. Nanotechnology, 2019, 30, 305302.	1.3	6
243	X-ray elastography by visualizing propagating shear waves. Applied Physics Express, 2020, 13, 042004.	1.1	6
244	Inelastic deformation of metallic glasses under dynamic cyclic loading. Scripta Materialia, 2021, 194, 113675.	2.6	6
245	Unusual two-step dealloying mechanism of nanoporous TiVNbMoTa high-entropy alloy during liquid metal dealloying. Journal of Materials Research and Technology, 2021, 14, 2945-2953.	2.6	6
246	Effect of physical aging and cyclic loading on power-law creep of high-entropy metallic glass. Journal of Materials Science and Technology, 2022, 115, 1-9.	5.6	6
247	High-entropy design and its influence on glass-forming ability in Zr–Cu-based metallic glass. Journal of Alloys and Compounds, 2022, 915, 165366.	2.8	6
248	In Situ Observation of Stress-Induced Structural Disorder and Fictive Stress in a Zr55Al10Ni5Cu30Glassy Alloy. Japanese Journal of Applied Physics, 2003, 42, 6504-6507.	0.8	5
249	Novel Nanostructure and Deformation Behavior in Rapidly Quenched Cu- (Zr or Hf)-Ti Alloys. Advanced Engineering Materials, 2005, 7, 39-43.	1.6	5
250	Structural Observation and RMC Modeling for Ni-Zr and Cu-Zr Metallic Glasses. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 217-220.	0.1	5
251	Nanostructure controlling in Zr-based metallic glasses using icosahedral local structure. Journal of Alloys and Compounds, 2009, 483, 231-234.	2.8	5
252	The Effect of Co Addition on Glassy Forming Ability and Soft Magnetic Properties of Fe-Si-B-P Bulk Metallic Glass. Key Engineering Materials, 0, 508, 112-116.	0.4	5

#	Article	IF	CITATIONS
253	ZrCu-Based Metallic Glass Matrix Composites with Ta Dispersoid by <i>In Situ</i> Dealloying Method. Materials Transactions, 2013, 54, 1416-1422.	0.4	5
254	Pronounced tensile plasticity at room temperature in a Au65Cu10.5Ag7.5Si17 metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 600, 32-36.	2.6	5
255	Edge-illumination x-ray phase contrast imaging with Pt-based metallic glass masks. Review of Scientific Instruments, 2017, 88, 063705.	0.6	5
256	Structure and mechanical properties of Ti-Based alloys containing Ag subjected to a thermomechanical treatment. Journal of Alloys and Compounds, 2019, 781, 1182-1188.	2.8	5
257	Detailed structural analysis of amorphous Pd40Cu40P20: Comparison with the metallic glass Pd40Ni40P20 from the viewpoint of glass forming ability. Journal of Non-Crystalline Solids, 2021, 555, 120536.	1.5	5
258	Electrochemically synthesized liquid-sulfur/sulfide composite materials for high-rate magnesium battery cathodes. Journal of Materials Chemistry A, 2021, 9, 16585-16593.	5.2	5
259	Stress relaxation in high-entropy Pd20Pt20Cu20Ni20P20 metallic glass: Experiments, modeling and theory. Mechanics of Materials, 2021, 160, 103959.	1.7	5
260	Nanoimprinting of magnetic FeCo-based metallic glass thin films. Journal of Magnetism and Magnetic Materials, 2022, 542, 168455.	1.0	5
261	Mechanical Properties and Fracture Characteristics of Zr-Based Bulk Metallic Class Composites Containing Carbon Nanotube Addition. Journal of Materials Research, 2004, 19, 1068-1076.	1.2	4
262	Primary precipitation of icosahedral quasicrystal with rearrangement of constitutional elements in Zr65Al7.5Cu27.5 glassy alloy with low oxygen impurity. Journal of Materials Research, 2005, 20, 303-306.	1.2	4
263	Hydrogen-induced internal friction of Ti-rich multicomponent glassy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 442, 106-108.	2.6	4
264	Relationship between the Reinforcement Size and Mechanical Properties of Zr-Based Glassy Matrix Composites. Materials Transactions, 2012, 53, 879-884.	0.4	4
265	The effect of size and volume fraction of the reinforcement on mechanical property and deformation mechanism of the bulk metallic glassy composite. Journal of Alloys and Compounds, 2015, 644, 25-29.	2.8	4
266	Phonon Excitations in Pd ₄₀ Ni ₄₀ P ₂₀ Bulk Metallic Glass by Inelastic X-Ray Scattering. Materials Science Forum, 0, 879, 767-772.	0.3	4
267	Preparation of Nanoporous Si by Dealloying in Metallic Melt and Its Application for Negative Electrode of Lithium Ion Battery. Materials Today: Proceedings, 2017, 4, 11465-11469.	0.9	4
268	A novel method of surface modification by electrochemical deoxidation: Effect on surface characteristics and initial bioactivity of zirconia. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 2641-2652.	1.6	4
269	Inhomogeneous dealloying kinetics along grain boundaries during liquid metal dealloying. Journal of Materials Science and Technology, 2022, 106, 41-48.	5.6	4
270	3D interconnected nanoporous FeCo soft magnetic materials synthesized by liquid metal dealloying. Journal of Alloys and Compounds, 2022, 908, 164688.	2.8	4

#	Article	IF	CITATIONS
271	Strengthening Mechanisms in Al-Based and Zr-Based Amorphous Nanocomposites. Materials Transactions, 2002, 43, 2026-2030.	0.4	3
272	Effect of μm-ZrC Dispersoids and Nanoprecipitates on Mechanical Properties of CuZrTi Bulk Glasses. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 161-166.	0.1	3
273	Internal Friction and Mechanical Strength of Hydrogenated Ti-Rich Multicomponent Glassy Alloys. Key Engineering Materials, 2006, 319, 139-144.	0.4	3
274	Microstructure of Rapidly Solidified Co-Sn-Ti and Co-Sn-Si Alloys. Materials Science Forum, 2007, 561-565, 1357-1360.	0.3	3
275	Internal friction induced by interstitial atoms in multicomponent glassy alloy and composite. Journal of Alloys and Compounds, 2007, 434-435, 196-198.	2.8	3
276	Displacement Behavior Study of the Shear Stress Effect on the Early Viscous Flow Nature of Fe-B-Nb-Y Metallic Glassy Powder in Spark Plasma Sintering. Materials Transactions, 2009, 50, 490-493.	0.4	3
277	Comparing the origin of ductility in the Zr–Al–Ni–Cu–M (MÂ=ÂNb, Pd) metallic glasses. Intermetallics, 2010, 18, 1884-1888.	1.8	3
278	Surface-activated supercooled liquid brazing. Scripta Materialia, 2013, 68, 699-702.	2.6	3
279	Non-Monotonic Aging Temperature Dependence of Superelasticity of Ti ₇₂ Nb ₁₅ Zr ₁₀ Al ₃ Quaternary Alloys. Materials Transactions, 2013, 54, 1502-1509.	0.4	3
280	Solid Argon Precipitation in a Metallic Glass: Does Free-Volume Help?. Materials Research Letters, 2014, 2, 94-99.	4.1	3
281	A combination of anomalous x-ray scattering and neutron diffraction for structural characterizations of Zr63Ni25Al12metallic glass. Journal of Physics: Conference Series, 2014, 502, 012023.	0.3	3
282	Novel α + β Type Ti-Fe-Cu Alloys Containing Sn with Pertinent Mechanical Properties. Metals, 2020, 10, 34.	1.0	3
283	Effect of the synthesis conditions of Ce0.9Gd0.1O1.95 powder on its morphology and characteristics of the oxygen ion-conducting ceramics obtained by spark plasma sintering. Ceramics International, 2021, 47, 2557-2564.	2.3	3
284	Identifying the high entropy characteristic in La-based metallic glasses. Applied Physics Letters, 2021, 119, .	1.5	3
285	Response to the commentary by Robert Tournier and Michael Ojovan on our publication entitled "Improving glass forming ability of off-eutectic metallic glass formers by manipulating primary crystallization reactions― Scripta Materialia, 2021, 205, 114035.	2.6	3
286	Room Temperature Plasticity of Zr ₆₅ Al _{7.5} Ni ₁₀ Cu _{17.5-xBulk Metallic Glasses. Materials Science Forum, 2007, 539-543, 2054-2058.}	o&gcsPd&lf	t;sub>x&li
287	Low Temperature Elastic Properties of CuZrTi Bulk Metallic Glass. Materials Transactions, 2007, 48, 1842-1845.	0.4	2
288	Study on Correlation between Complex Relaxation Phenomena and Elastic Heterogeneity in Metallic	0.1	2

.C**)** 288 Glasses. Zairyo/Journal of the Society of Materials Science, Japan, 2013, 62, 167-171.

Нідемі Като

#	Article	IF	CITATIONS
289	Bicontinuous Porous Metals by Dealloying in Metallic Melts. Materia Japan, 2016, 55, 519-527.	0.1	2
290	Mechanical Properties and Biocompatibility of the Ti-Based Low-Alloys Minor Alloying by the Noble Metals. Nano Hybrids and Composites, 2017, 13, 63-68.	0.8	2
291	Morphological features of W- and Ni-containing coatings on diamond crystals and properties of diamond-copper composites obtained by Spark Plasma Sintering. Materials Today: Proceedings, 2017, 4, 11396-11401.	0.9	2
292	Electronic structures and heterogeneity of Zr-Cu-Ag metallic glasses. Journal of Non-Crystalline Solids, 2018, 498, 281-287.	1.5	2
293	Introducing dislocations locally in Al-supersaturated α2-Ti3Al single crystal via nanoscale wedge indentation. Intermetallics, 2019, 113, 106557.	1.8	2
294	Selective deposition of platinum hemispheres on the {100} facets of synthetic diamond. Diamond and Related Materials, 2020, 101, 107620.	1.8	2
295	Evolution of microstructural complex transitions in low-modulus β-type Ti-35Nb-2Ta-3Zr alloy manufactured by laser powder bed fusion. Additive Manufacturing, 2021, 48, 102376.	1.7	2
296	A Fictive Stress Model Calculation of Creep Deformation of Zr-based Bulk Metallic Glass in the Glass Transition Region under a Constant Load. Japanese Journal of Applied Physics, 2004, 43, 8185-8189.	0.8	1
297	Non-equilibrium Ti-Fe bulk alloys with ultra-high strength and enhanced ductility. Materials Research Society Symposia Proceedings, 2004, 851, 304.	0.1	1
298	Non-Equilibrium Arc-Melted Binary Ti-Fe Bulk Alloys with Ultra-High Strength and Enhanced Ductility. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 49-52.	0.1	1
299	Deformation Behavior of a Zr ₅₅ Al ₁₀ Ni ₅ Cu ₃₀ Bulk Metallic Glass at High Temperatures. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 359-362.	0.1	1
300	X-Ray Study of Pd ₄₀ Cu ₃₀ Ni ₁₀ P ₂₀ Bulk Metallic Glass Brazing Filler for Ti-6Al-7Nb Alloy. Materials Science Forum, 2007, 539-543, 1983-1987	0.3	1
301	Synthesis and Properties of Nanostructure Controlled Metallic Glasses. Journal of Physics: Conference Series, 2007, 61, 1002-1006.	0.3	1
302	Temperature dependence of the yield strain of a Zr-based metallic glass at the glassy state. Journal of Alloys and Compounds, 2009, 483, 150-153.	2.8	1
303	Effects of Noble Metal Additons on Plastic Deformation of Zr-Cu-Ni-Al Based Bulk Metallic Glasses. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63, 230-238.	0.1	1
304	Synthesis of Nano-Sized TiB2 and TiC Particles During Spark Plasma Sintering of Ball-Milled Ti-Cu Alloy + B(C) and Ti+Cu+B mixtures. IOP Conference Series: Materials Science and Engineering, 2019, 678, 012012.	0.3	1
305	Soot-combustion catalyst of Pd/ZrO2 composites prepared from Zr65Pd35 amorphous alloy by oxidation treatment. Japanese Journal of Applied Physics, 2020, 59, SAAC06.	0.8	1
306	Surface Improvement for Biocompatibility of Biomedical Ti Alloy by Dealloying in Metallic Melt. Springer Series in Biomaterials Science and Engineering, 2015, , 153-179.	0.7	1

#	Article	IF	CITATIONS
307	Nanoporous Behavior Induced by Excess Vacancy Clustering in Rapidly-Solidified B2 FeAl Ribbons. Materials Research Society Symposia Proceedings, 2002, 753, 1.	0.1	0
308	Obsevations Ofstress-Induced Structuraldisorder and Fictive Stress in Bulk Metallic Glasses. Materials Research Society Symposia Proceedings, 2002, 754, 1.	0.1	0
309	Strengthening Mechanism of Zr-Based Devitrified Amorphous Nanocomposites with Quasicrystalline Phases. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 205-208.	0.1	0
310	Heating and Structural Disordering Effects of the Nonlinear Viscous Flow in a Zr55Al10Ni5Cu30 Bulk Metallic Glass. Materials Research Society Symposia Proceedings, 2003, 806, 344.	0.1	0
311	Influence of <i>In-Situ</i> Nanoprecipitation on Constant Load Deformation in the Glass Transition Region of a Cu ₆₀ Zr ₃₀ Ti ₁₀ Bulk Metallic Glass. Materials Transactions, 2004, 45, 2383-2388.	0.4	0
312	High Mechanical Properties of Cast Quasicrystal-Reinforced Mg-Alloys. Materials Science Forum, 2005, 488-489, 127-130.	0.3	0
313	Origin of Different Dependence of Apparent Glass-Forming Ability on Casting-Atmosphere-Pressure in Zr-Al-Ni-Cu-Pd Alloy System. Materials Science Forum, 2007, 561-565, 1311-1314.	0.3	0
314	Glass Formation Dependence on Casting Atmosphere in a Zr-Al-Ni-Cu-Pd Alloy System. Materials Research Society Symposia Proceedings, 2007, 1048, 18.	0.1	0
315	Creep Deformation Behavior at Temperature Less than Glass Transition Temperature in Zr-Based Bulk Metallic Glass. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2010, 74, 614-621.	0.2	Ο
316	Preparation of the Catalyst for Methanol Steam Reforming from Cr–Zr Amorphous Alloys. Materials Science Forum, 0, 761, 7-10.	0.3	0
317	Correlation between the Enhanced Plasticity of Glassy Matrix Composites and the Volume Fraction, Size and Intrinsic Mechanical Property of Reinforcements. Materials Science Forum, 0, 783-786, 1967-1970.	0.3	0
318	Amorphousization and Superconducting Property for Zr-Nb Based Alloy. Materials Science Forum, 0, 783-786, 2503-2508.	0.3	0
319	Existence of covalent-like bonding in Pd ₄₀ Cu ₂₀ Ge ₄₀ metallic glass observed by anomalous x-ray scattering. Journal of Physics: Conference Series, 2014, 519, 012005.	0.3	Ο
320	A Combination of Anomalous X-ray Scattering and Neutron Diffraction for Structural Characterizations of Zr ₄₅ Cu ₄₅ Ag ₁₀ Metallic Glass. , 2015, , .		0
321	Formation of Porous Layer with Low Ni Content on NiTi Substrate by Dealloying in Metallic Melts. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63, 766-770.	0.1	Ο
322	Fracture and Fatigue Characteristics under Torsional Stressing in Zr-Based Bulk Metallic Glass. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63, 223-229.	0.1	0
323	Formation of extremely high-aspect Si sub-micron patterns with smooth wall for MEMS and X-ray devices. , 2017, , .		Ο
324	Electrochemical Performance and Volume Change of Lithium Ion Secondary Battery Negative Electrode Made with Bicontinuous Nanoporous Si. Materia Japan, 2017, 56, 438-442.	0.1	0

#	Article	IF	CITATIONS
325	Optimizing Imprinting Condition for High Aspect Grating of Pd-based Metallic Glass. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2018, 65, 52-56.	0.1	0
326	Relaxation Behavior and Heterogeneous Structures of Metallic Glasses. Zairyo/Journal of the Society of Materials Science, Japan, 2021, 70, 374-380.	0.1	0
327	In situ observation of liquid metal dealloying and etching of porous FeCr by X-ray tomography and X-ray diffraction. Materialia, 2021, 18, 101125.	1.3	Ο
328	Synthesis and Viscoelasticity of Zr-based Bulk Glassy Alloy Containing ZrC Particles. Materials Research Society Symposia Proceedings, 2000, 644, 1191.	0.1	0
329	Development of Strong and Ductile Metastable Face-Centered Cubic Single-Phase High-Entropy Alloys. SSRN Electronic Journal, 0, , .	0.4	Ο
330	Improving Glass Forming Ability of Off-Eutectic Metallic Glass Formers by Manipulating Primary Crystallization Reactions. SSRN Electronic Journal, 0, , .	0.4	0
331	Effects of Alloying Elements on the Microstructure and Mechanical Properties of Novel α+β Dual-Phase Ti-Nb-Ta-Zr Alloys. SSRN Electronic Journal, 0, , .	0.4	Ο
332	Development of Porous Metals by Liquid Metal Dealloying. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2022, 69, 27-33.	0.1	0
333	Surface Modification by Liquid Metal Dealloying. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2021, 72, 610-615.	0.1	0