
Oliver A Kent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/714963/publications.pdf Version: 2024-02-01

OLIVED A KENT

#	Article	IF	CITATIONS
1	Transactivation of miR-34a by p53 BroadlyÂInfluences Gene Expression andÂPromotesÂApoptosis. Molecular Cell, 2007, 26, 745-752.	9.7	1,844
2	Nuclear miRNA Regulates the Mitochondrial Genome in the Heart. Circulation Research, 2012, 110, 1596-1603.	4.5	298
3	Restitution of Tumor Suppressor MicroRNAs Using a Systemic Nanovector Inhibits Pancreatic Cancer Growth in Mice. Molecular Cancer Therapeutics, 2011, 10, 1470-1480.	4.1	279
4	Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes and Development, 2010, 24, 2754-2759.	5.9	273
5	Lessons from miR-143/145: the importance of cell-type localization of miRNAs. Nucleic Acids Research, 2014, 42, 7528-7538.	14.5	185
6	A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells. Cancer Biology and Therapy, 2009, 8, 2013-2024.	3.4	108
7	MicroRNA profiling of diverse endothelial cell types. BMC Medical Genomics, 2011, 4, 78.	1.5	88
8	Role of pri-miRNA tertiary structure in miR-17~92 miRNA biogenesis. RNA Biology, 2011, 8, 1105-1114.	3.1	85
9	The RhoGEF GEF-H1 Is Required for Oncogenic RAS Signaling via KSR-1. Cancer Cell, 2014, 25, 181-195.	16.8	76
10	Divergent Effects of miRâ€181 Family Members on Myocardial Function Through Protective Cytosolic and Detrimental Mitochondrial microRNA Targets. Journal of the American Heart Association, 2017, 6, .	3.7	74
11	Crystal structure of a core spliceosomal protein interface. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1266-1271.	7.1	70
12	Transcriptional Regulation of miR-31 by Oncogenic KRAS Mediates Metastatic Phenotypes by Repressing RASA1. Molecular Cancer Research, 2016, 14, 267-277.	3.4	61
13	Reciprocal stabilization of ABL and TAZ regulates osteoblastogenesis through transcription factor RUNX2. Journal of Clinical Investigation, 2016, 126, 4482-4496.	8.2	60
14	Identifying targets of miR-143 using a SILAC-based proteomic approach. Molecular BioSystems, 2010, 6, 1873.	2.9	58
15	Functional integration of microRNAs into oncogenic and tumor suppressor pathways. Cell Cycle, 2008, 7, 2493-2499.	2.6	53
16	Structuring of the 3′ Splice Site by U2AF65. Journal of Biological Chemistry, 2003, 278, 50572-50577.	3.4	39
17	Characterization of a U2AF-Independent Commitment Complex (E′) in the Mammalian Spliceosome Assembly Pathway. Molecular and Cellular Biology, 2005, 25, 233-240.	2.3	36
18	Early organization of pre-mRNA during spliceosome assembly. , 2002, 9, 576-81.		32

OLIVER A KENT

#	Article	IF	CITATIONS
19	Kinetic Analysis of the M1 RNA Folding Pathway. Journal of Molecular Biology, 2000, 304, 699-705.	4.2	31
20	RANKL coordinates multiple osteoclastogenic pathways by regulating expression of ubiquitin ligase RNF146. Journal of Clinical Investigation, 2017, 127, 1303-1315.	8.2	31
21	Evidence for helical unwinding of an RNA substrate by the RNA enzyme RNase P: use of an interstrand disulfide crosslink in substrate. Journal of Molecular Biology, 2000, 295, 1113-1118.	4.2	23
22	Haploinsufficiency of RREB1 causes a Noonan-like RASopathy via epigenetic reprogramming of RAS-MAPK pathway genes. Nature Communications, 2020, 11, 4673.	12.8	19
23	An oncogenic KRAS transcription program activates the RHOGEF ARHGEF2 to mediate transformed phenotypes in pancreatic cancer. Oncotarget, 2017, 8, 4484-4500.	1.8	18
24	RNAi: running interference for the cell. Organic and Biomolecular Chemistry, 2004, 2, 1957.	2.8	14
25	Increased mutant KRAS gene dosage drives pancreatic cancer progression: evidence for wild-type KRAS as a tumor suppressor?. Hepatobiliary Surgery and Nutrition, 2018, 7, 403-405.	1.5	9
26	Co-dependency between KRAS addiction and ARHGEF2 promotes an adaptive escape from MAPK pathway inhibition. Small GTPases, 2019, 10, 441-448.	1.6	5
27	In Vivo Nanovector Delivery of a Heart-specific MicroRNA-sponge. Journal of Visualized Experiments, 2018, , .	0.3	3
28	New Challenges. , 2005, , 461-538.		2
29	Radical probing of spliceosome assembly. Methods, 2017, 125, 16-24.	3.8	2
30	RNAi: Running Interference for the Cell. ChemInform, 2004, 35, no.	0.0	0
31	Proteins Specifically Modified With a Chemical Nuclease as Probes of RNA-Protein Interaction. Methods in Molecular Biology, 2008, 488, 191-200.	0.9	0