
Marta Pogrzeba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7149626/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phytoextraction crop disposal—an unsolved problem. Environmental Pollution, 2004, 128, 373-379.	7.5	277
2	Progress in upscaling <i>Miscanthus</i> biomass production for the European bioâ€economy with seedâ€based hybrids. GCB Bioenergy, 2017, 9, 6-17.	5.6	156
3	The use of indigenous plant species and calcium phosphate for the stabilization of highly metal-polluted sites in southern Poland. Plant and Soil, 2005, 273, 291-305.	3.7	86
4	Chlorophyll a Fluorescence in Evaluation of the Effect of Heavy Metal Soil Contamination on Perennial Grasses. PLoS ONE, 2014, 9, e91475.	2.5	80
5	Hormesis in Plants: The Role of Oxidative Stress, Auxins and Photosynthesis in Corn Treated with Cd or Pb. International Journal of Molecular Sciences, 2020, 21, 2099.	4.1	65
6	Relationships between soil parameters and physiological status of Miscanthus x giganteus cultivated on soil contaminated with trace elements under NPK fertilisation vs. microbial inoculation. Environmental Pollution, 2017, 225, 163-174.	7.5	63
7	Implementing miscanthus into farming systems: A review of agronomic practices, capital and labour demand. Renewable and Sustainable Energy Reviews, 2020, 132, 110053.	16.4	45
8	Macroelements and heavy metals content in energy crops cultivated on contaminated soil under different fertilization—case studies on autumn harvest. Environmental Science and Pollution Research, 2018, 25, 12096-12106.	5.3	39
9	How autochthonous microorganisms influence physiological status of Zea mays L. cultivated on heavy metal contaminated soils?. Environmental Science and Pollution Research, 2019, 26, 4746-4763.	5.3	32
10	Cultivation of C4 perennial energy grasses on heavy metal contaminated arable land: Impact on soil, biomass, and photosynthetic traits. Environmental Pollution, 2019, 250, 300-311.	7.5	31
11	Harvest date and leaf:stem ratio determine methane hectare yield of miscanthus biomass. GCB Bioenergy, 2019, 11, 21-33.	5.6	30
12	New Miscanthus hybrids cultivated at a Polish metal-contaminated site demonstrate high stomatal regulation and reduced shoot Pb and Cd concentrations. Environmental Pollution, 2019, 252, 1377-1387.	7.5	29
13	Influence of short-term macronutrient deprivation in maize on photosynthetic characteristics, transpiration and pigment content. Scientific Reports, 2019, 9, 14181.	3.3	27
14	Phytoremediation as an effective method to remove heavy metals from contaminated area – TG/FT-IR analysis results of the gasification of heavy metal contaminated energy crops. Journal of the Energy Institute, 2017, 90, 408-417.	5.3	26
15	Changes in Enzyme Activities and Microbial Community Structure in Heavy Metalâ€Contaminated Soil under <i>in Situ</i> Aided Phytostabilization. Clean - Soil, Air, Water, 2014, 42, 1618-1625.	1.1	25
16	Exogenous jasmonic acid decreased Cu accumulation by alfalfa and improved its photosynthetic pigments and antioxidant system. Ecotoxicology and Environmental Safety, 2020, 190, 110176.	6.0	24
17	Heavy Metal Uptake by Novel Miscanthus Seed-Based Hybrids Cultivated in Heavy Metal Contaminated Soil. Civil and Environmental Engineering Reports, 2017, 26, 121-132.	0.3	22
18	Ecological strategy for soil contaminated with mercury. Plant and Soil, 2016, 409, 371-387.	3.7	20

Marta Pogrzeba

#	Article	IF	CITATIONS
19	Fuel characterization and thermal degradation kinetics of biomass from phytoremediation plants. Biomass and Bioenergy, 2020, 134, 105469.	5.7	19
20	Energy crops for sustainable phytoremediation – Thermal decomposition kinetics. Energy Procedia, 2019, 158, 873-878.	1.8	14
21	Dactylis glomerata L. cultivation on mercury contaminated soil and its physiological response to granular sulphur aided phytostabilization. Environmental Pollution, 2019, 255, 113271.	7.5	14
22	The cadmium accumulation differences of two Bidens pilosa L. ecotypes from clean farmlands and the changes of some physiology and biochemistry indices. Ecotoxicology and Environmental Safety, 2021, 209, 111847.	6.0	14
23	Special issue in honour of Prof. Reto J. Strasser -ÂDevelopment and aging of photosynthetic apparatus of Vitis vinifera L. during growing season. Photosynthetica, 2020, 58, 186-193.	1.7	14
24	Case study on phytoremediation driven energy crop production using <i>Sida hermaphrodita</i> . International Journal of Phytoremediation, 2018, 20, 1194-1204.	3.1	13
25	Energy crops for sustainable phytoremediation – Fuel characterization. Energy Procedia, 2019, 158, 867-872.	1.8	13
26	Environmental hazards related toMiscanthusxgiganteuscultivation on heavy metal contaminated soil. E3S Web of Conferences, 2013, 1, 29006.	0.5	12
27	Energy Crop at Heavy Metal-Contaminated Arable Land as an Alternative for Food and Feed Production: Biomass Quantity and Quality. , 2019, , 1-21.		10
28	DArT-based characterisation of genetic diversity in a Miscanthus collection from Poland. Planta, 2015, 242, 985-996.	3.2	9
29	Phytoremediation Technologies Used To Reduce Environmental Threat Posed By Metal-Contaminated Soils: Theory And Reality. NATO Science for Peace and Security Series C: Environmental Security, 2008, , 285-297.	0.2	9
30	Sewage sludge and fly ash mixture as an alternative for decontaminating lead and zinc ore regions. Environmental Monitoring and Assessment, 2015, 187, 4120.	2.7	8
31	Physiological status and biomass yield of Sida hermaphrodita (L.) Rusby cultivated on two distinct marginal lands in Southern and Northern Poland. Industrial Crops and Products, 2021, 167, 113502.	5.2	7
32	A Heavy Metal Environmental Threat Resulting from Combustion of Biofuels of Plant Origin. NATO Science for Peace and Security Series C: Environmental Security, 2011, , 213-225.	0.2	5
33	Suitability of Grass Species for Phytoremediation of Soils Polluted with Heavy-metals. , 2013, , 245-248.		5
34	Field Evaluation of Arbuscular Mycorrhizal Fungal Colonization in Miscanthus × giganteus and Seed-Based Miscanthus Hybrids Grown in Heavy-Metal-Polluted Areas. Plants, 2022, 11, 1216.	3.5	5
35	The effect of amendments on Lolium perenne roots arbuscular mycorrhizal fungi colonization when cultivated in contaminated soil. International Journal of Environmental Science and Technology, 2022, 19, 9365-9376.	3.5	4
36	Possibility of Using Energy Crops for Phytoremediation of Heavy Metals Contaminated Land—A Three-Year Experience. Springer Proceedings in Energy, 2018, , 33-45.	0.3	2

Marta Pogrzeba

#	Article	IF	CITATIONS
37	Photosynthetic Apparatus Efficiency of Sida Hermaphrodita Cultivated on Heavy Metals Contaminated Arable Land Under Various Fertilization Regimes. Civil and Environmental Engineering Reports, 2018, 28, 130-145.	0.3	2
38	Comparison of root colonization by arbuscular mycorrhizal fungi in energy crop species cultivated on arable land contaminated with heavy metals. IOP Conference Series: Earth and Environmental Science, 2019, 214, 012030.	0.3	2
39	Soil Remediation Scenarios for Heavy Metal Contaminated Soil. NATO Science for Peace and Security Series C: Environmental Security, 2008, , 301-307.	0.2	2
40	The Effect of Heavy Metal Contaminated Soil on Growth and Development of Perennial Grasses. E3S Web of Conferences, 2013, 1, 13006.	0.5	1
41	MACROELEMENTS AND HEAVY METALS CONTENT IN PANICUM VIRGATUM CULTIVATED ON CONTAMINATED SOIL UNDER DIFFERENT FERTILIZATION. Agriculture and Forestry, 2017, 63, .	0.1	1
42	How to Grow Environmental $\hat{a} \in$ Sound Biofuels. NATO Science for Peace and Security Series C: Environmental Security, 2011, , 317-330.	0.2	1
43	Diminishing of Human Exposure from Active Lead and Zinc Mining Dumps. NATO Science for Peace and Security Series C: Environmental Security, 2008, , 293-299.	0.2	1
44	Diminishing the risk on lead and zinc ore regions by subtle modulation of soil properties. E3S Web of Conferences, 2013, 1, 01001.	0.5	0
45	PHYSICO-CHEMICAL PROPERTIES OF THE SOLID AND LIQUID WASTE PRODUCTS FROM THE HEAVY METAL CONTAMINATED ENERGY CROPS GASIFICATION PROCESS. Inżynieria Ekologiczna, 2017, 18, 36-42.	0.2	0