
Matthias Sendler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/714948/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recruitment of histone deacetylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer. Gut, 2012, 61, 439-448.	6.1	227
2	Genetics, Cell Biology, and Pathophysiology of Pancreatitis. Gastroenterology, 2019, 156, 1951-1968.e1.	0.6	180
3	Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling. Gut, 2017, 66, 473-486.	6.1	174
4	Cathepsin B-Mediated Activation of Trypsinogen in Endocytosing Macrophages Increases Severity of Pancreatitis in Mice. Gastroenterology, 2018, 154, 704-718.e10.	0.6	168
5	NLRP3 Inflammasome Regulates Development of Systemic Inflammatory Response and Compensatory Anti-Inflammatory Response Syndromes in Mice With Acute Pancreatitis. Gastroenterology, 2020, 158, 253-269.e14.	0.6	162
6	Tumour necrosis factor $\hat{l}\pm$ secretion induces protease activation and acinar cell necrosis in acute experimental pancreatitis in mice. Gut, 2013, 62, 430-439.	6.1	160
7	Alcohol Disrupts Levels and Function of the Cystic Fibrosis Transmembrane Conductance Regulator to Promote Development of Pancreatitis. Gastroenterology, 2015, 148, 427-439.e16.	0.6	159
8	A recombined allele of the lipase gene CEL and its pseudogene CELP confers susceptibility to chronic pancreatitis. Nature Genetics, 2015, 47, 518-522.	9.4	157
9	Immune Cell and Stromal Signature Associated With Progression-Free Survival of Patients With Resected Pancreatic Ductal Adenocarcinoma. Gastroenterology, 2018, 155, 1625-1639.e2.	0.6	152
10	Cathepsin L Inactivates Human Trypsinogen, Whereas Cathepsin L-Deletion Reduces the Severity of Pancreatitis in Mice. Gastroenterology, 2010, 138, 726-737.	0.6	110
11	Animal models for investigating chronic pancreatitis. Fibrogenesis and Tissue Repair, 2011, 4, 26.	3.4	96
12	Long-term instability of the intestinal microbiome is associated with metabolic liver disease, low microbiota diversity, diabetes mellitus and impaired exocrine pancreatic function. Gut, 2021, 70, 522-530.	6.1	96
13	Lysosome-Associated Membrane Proteins (LAMP) Maintain Pancreatic Acinar Cell Homeostasis: LAMP-2–Deficient Mice Develop Pancreatitis. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 678-694.	2.3	95
14	Chronic stress increases experimental pancreatic cancer growth, reduces survival and can be antagonised by beta-adrenergic receptor blockade. Pancreatology, 2016, 16, 423-433.	0.5	95
15	Cathepsin B Activity Initiates Apoptosis via Digestive Protease Activation in Pancreatic Acinar Cells and Experimental Pancreatitis. Journal of Biological Chemistry, 2016, 291, 14717-14731.	1.6	81
16	Impaired Exocrine Pancreatic Function Associates With Changes in Intestinal Microbiota Composition and Diversity. Gastroenterology, 2019, 156, 1010-1015.	0.6	74
17	Tumour-specific delivery of siRNA-coupled superparamagnetic iron oxide nanoparticles, targeted against PLK1, stops progression of pancreatic cancer. Gut, 2016, 65, 1838-1849.	6.1	71
18	Complement Component 5 Mediates Development of Fibrosis, via Activation of Stellate Cells, in 2 Mouse Models of Chronic Pancreatitis. Gastroenterology, 2015, 149, 765-776.e10.	0.6	68

2

MATTHIAS SENDLER

#	Article	IF	CITATIONS
19	Subdiaphragmatic vagotomy promotes tumor growth and reduces survival via TNFα in a murine pancreatic cancer model. Oncotarget, 2017, 8, 22501-22512.	0.8	63
20	Drug Efflux Transporter Multidrug Resistance-Associated Protein 5 Affects Sensitivity of Pancreatic Cancer Cell Lines to the Nucleoside Anticancer Drug 5-Fluorouracil. Drug Metabolism and Disposition, 2011, 39, 132-139.	1.7	54
21	In vivo imaging of pancreatic tumours and liver metastases using 7 Tesla MRI in a murine orthotopic pancreatic cancer model and a liver metastases model. BMC Cancer, 2011, 11, 40.	1.1	53
22	The Gut Microbiome in Patients With Chronic Pancreatitis Is Characterized by Significant Dysbiosis and Overgrowth by Opportunistic Pathogens. Clinical and Translational Gastroenterology, 2020, 11, e00232.	1.3	49
23	Cathepsin D regulates cathepsin B activation and disease severity predominantly in inflammatory cells during experimental pancreatitis. Journal of Biological Chemistry, 2018, 293, 1018-1029.	1.6	47
24	Role of endoplasmic reticulum stress and protein misfolding in disorders of the liver and pancreas. Advances in Medical Sciences, 2019, 64, 315-323.	0.9	39
25	The Importance of Aquaporin 1 in Pancreatitis and Its Relation to the CFTR Cl- Channel. Frontiers in Physiology, 2018, 9, 854.	1.3	32
26	Deficiency of cathepsin C ameliorates severity of acute pancreatitis by reduction of neutrophil elastase activation and cleavage of E-cadherin. Journal of Biological Chemistry, 2019, 294, 697-707.	1.6	31
27	Effect of magnesium supplementation and depletion on the onset and course of acute experimental pancreatitis. Gut, 2014, 63, 1469-1480.	6.1	28
28	Necrosis, Apoptosis, Necroptosis, Pyroptosis: It Matters How Acinar Cells Die During Pancreatitis. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 407-408.	2.3	28
29	Roles of autophagy and metabolism in pancreatic cancer cell adaptation to environmental challenges. American Journal of Physiology - Renal Physiology, 2017, 313, G524-G536.	1.6	23
30	Downregulation of aquaporins 1 and 5 in nasal gland by osmotic stress in ducklings, Anas platyrhynchos: implications for the production of hypertonic fluid. Journal of Experimental Biology, 2006, 209, 4067-4076.	0.8	22
31	Tumor-Specific Delivery of 5-Fluorouracil–Incorporated Epidermal Growth Factor Receptor–Targeted Aptamers as an Efficient Treatment in Pancreatic Ductal Adenocarcinoma Models. Gastroenterology, 2021, 161, 996-1010.e1.	0.6	20
32	Carrying asymptomatic gallstones is not associated with changes in intestinal microbiota composition and diversity but cholecystectomy with significant dysbiosis. Scientific Reports, 2021, 11, 6677.	1.6	19
33	TRAIL Promotes Tumor Growth in a Syngeneic Murine Orthotopic Pancreatic Cancer Model and Affects the Host Immune Response. Pancreas, 2016, 45, 401-408.	0.5	16
34	Mnk1 is a novel acinar cell-specific kinase required for exocrine pancreatic secretion and response to pancreatitis in mice. Gut, 2015, 64, 937-947.	6.1	13
35	Ductal Mucus Obstruction and Reduced Fluid Secretion Are Early Defects in Chronic Pancreatitis. Frontiers in Physiology, 2018, 9, 632.	1.3	13
36	Early trypsin activation develops independently of autophagy in caerulein-induced pancreatitis in mice. Cellular and Molecular Life Sciences, 2020, 77, 1811-1825.	2.4	13

MATTHIAS SENDLER

#	Article	IF	CITATIONS
37	Effect of oral administration of AZD8309, a CXCR2 antagonist, on the severity of experimental pancreatitis. Pancreatology, 2016, 16, 761-769.	0.5	12
38	Role of Bile Acids and Bile Salts in Acute Pancreatitis. Pancreas, 2021, 50, 3-11.	0.5	12
39	Experimental pancreatitis is characterized by rapid T cell activation, Th2 differentiation that parallels disease severity, and improvement after CD4+ T cell depletion. Pancreatology, 2020, 20, 1637-1647.	0.5	11
40	Absence of the neutrophil serine protease cathepsin G decreases neutrophil granulocyte infiltration but does not change the severity of acute pancreatitis. Scientific Reports, 2019, 9, 16774.	1.6	10
41	Immunoproteasome impairment via β5i/LMP7â€deletion leads to sustained pancreatic injury from experimental pancreatitis. Journal of Cellular and Molecular Medicine, 2021, 25, 6786-6799.	1.6	9
42	Cathepsin D Expression and Gemcitabine Resistance in Pancreatic Cancer. JNCI Cancer Spectrum, 2020, 4, pkz060.	1.4	7
43	The Complex Role of Trypsin in Pancreatitis. Gastroenterology, 2020, 158, 822-826.	0.6	5
44	MiR-502 is the first reported miRNA simultaneously targeting two components of the classical non-homologous end joining (C-NHEJ) in pancreatic cell lines. Heliyon, 2020, 6, e03187.	1.4	5
45	Development of Pancreatic Cancer: Targets for Early Detection and Treatment. Digestive Diseases, 2016, 34, 525-531.	0.8	4
46	Breaking down haem attenuates acute pancreatitis: a new treatment option?. Gut, 2011, 60, 569-570.	6.1	3
47	Surgical Trauma Leads to a Shorter Survival in a Murine Orthotopic Pancreatic Cancer Model. European Surgical Research, 2015, 54, 87-94.	0.6	3
48	Pancreatitis severity in mice with impaired CFTR function but pancreatic sufficiency is mediated via ductal and inflammatory cellsâ€Not acinar cells. Journal of Cellular and Molecular Medicine, 2021, 25, 4658-4670.	1.6	3
49	Cell Signaling of Pancreatic Duct Pressure and Its Role in the Onset of Pancreatitis. Gastroenterology, 2020, 159, 827-831.	0.6	2
50	Analysis of GPRC6A variants in different pancreatitis etiologies. Pancreatology, 2020, 20, 1262-1267.	0.5	1
51	Pathogenese und Pathophysiologie der akuten Pankreatitis. , 2013, , 3-10.		1
52	The Pathogenesis of Chronic Pancreatitis. , 2017, , 29-62.		0
53	Molecular Basis of Diseases of the Exocrine Pancreas. , 2018, , 457-476.		0
54	Molecular basis of diseases of the exocrine pancreas. , 2020, , 367-379.		0

4

0

#	Article	IF	CITATIONS
55	Molecular Basis of Diseases of the Exocrine Pancreas. , 2009, , 421-433.		0

56 Molecular Basis of Diseases of the Exocrine Pancreas. , 2010, , 279-288.