
## Jack Phu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7149432/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The value of visual field testing in the era of advanced imaging: clinical and psychophysical perspectives. Australasian journal of optometry, The, 2017, 100, 313-332.                                                                                                    | 0.6 | 68        |
| 2  | Clinical Evaluation of Swedish Interactive Thresholding Algorithm–Faster Compared With Swedish<br>Interactive Thresholding Algorithm–Standard in Normal Subjects, Glaucoma Suspects, and Patients<br>With Glaucoma. American Journal of Ophthalmology, 2019, 208, 251-264. | 1.7 | 45        |
| 3  | Consistency of Structure-Function Correlation Between Spatially Scaled Visual Field Stimuli and In<br>Vivo OCT Ganglion Cell Counts. , 2018, 59, 1693.                                                                                                                     |     | 34        |
| 4  | A comparison of Goldmann <scp>III</scp> , V and spatially equated test stimuli in visual field testing:<br>the importance of complete and partial spatial summation. Ophthalmic and Physiological Optics, 2017,<br>37, 160-176.                                            | 1.0 | 33        |
| 5  | Development of a Spatial Model of Age-Related Change in the Macular Ganglion Cell Layer to Predict<br>Function From Structural Changes. American Journal of Ophthalmology, 2019, 208, 166-177.                                                                             | 1.7 | 33        |
| 6  | Pattern Recognition Analysis Reveals Unique Contrast Sensitivity Isocontours Using Static Perimetry<br>Thresholds Across the Visual Field. , 2017, 58, 4863.                                                                                                               |     | 32        |
| 7  | Ability of 24-2C and 24-2 Grids to Identify Central Visual Field Defects and Structure-Function<br>Concordance in Glaucoma and Suspects. American Journal of Ophthalmology, 2020, 219, 317-331.                                                                            | 1.7 | 30        |
| 8  | An evidenceâ€based approach to the routine use of optical coherence tomography. Australasian journal of optometry, The, 2019, 102, 242-259.                                                                                                                                | 0.6 | 26        |
| 9  | Anterior Chamber Angle Evaluation Using Gonioscopy: Consistency and Agreement between<br>Optometrists and Ophthalmologists. Optometry and Vision Science, 2019, 96, 751-760.                                                                                               | 0.6 | 22        |
| 10 | The Effect of Attentional Cueing and Spatial Uncertainty in Visual Field Testing. PLoS ONE, 2016, 11, e0150922.                                                                                                                                                            | 1.1 | 20        |
| 11 | Reducing Spatial Uncertainty Through Attentional Cueing Improves Contrast Sensitivity in Regions of<br>the Visual Field With Glaucomatous Defects. Translational Vision Science and Technology, 2018, 7, 8.                                                                | 1.1 | 20        |
| 12 | Comparison of 10-2 and 24-2C Test Grids for Identifying Central Visual Field Defects in Glaucoma and<br>Suspect Patients. Ophthalmology, 2021, 128, 1405-1416.                                                                                                             | 2.5 | 20        |
| 13 | Visualizing the Consistency of Clinical Characteristics that Distinguish Healthy Persons, Glaucoma Suspect Patients, and Manifest Glaucoma Patients. Ophthalmology Glaucoma, 2020, 3, 274-287.                                                                             | 0.9 | 18        |
| 14 | Management of openâ€angle glaucoma by primary eyeâ€care practitioners: toward a personalised medicine<br>approach. Australasian journal of optometry, The, 2021, 104, 367-384.                                                                                             | 0.6 | 18        |
| 15 | Viability of Performing Multiple 24-2 Visual Field Examinations at the Same Clinical Visit: The<br>Frontloading Fields Study (FFS). American Journal of Ophthalmology, 2021, 230, 48-59.                                                                                   | 1.7 | 18        |
| 16 | A Method Using Goldmann Stimulus Sizes I to V–Measured Sensitivities to Predict Lead Time Gained to<br>Visual Field Defect Detection in Early Glaucoma. Translational Vision Science and Technology, 2018, 7,<br>17.                                                       | 1.1 | 15        |
| 17 | Cluster analysis reveals patterns of ageâ€related change in anterior chamber depth for gender and ethnicity: clinical implications. Ophthalmic and Physiological Optics, 2020, 40, 632-649.                                                                                | 1.0 | 15        |
| 18 | A collaborative care pathway for patients with suspected angle closure glaucoma spectrum disease.<br>Australasian journal of optometry, The, 2020, 103, 212-219.                                                                                                           | 0.6 | 14        |

Јаск Рни

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A Strategy for Seeding Point Error Assessment for Retesting (SPEAR) in Perimetry Applied to Normal<br>Subjects, Glaucoma Suspects, and Patients With Glaucoma. American Journal of Ophthalmology, 2021,<br>221, 115-130. | 1.7 | 14        |
| 20 | Physiologic statokinetic dissociation is eliminated by equating static and kinetic perimetry testing procedures. Journal of Vision, 2016, 16, 5.                                                                         | 0.1 | 13        |
| 21 | Remote Grading of the Anterior Chamber Angle Using Goniophotographs and Optical Coherence<br>Tomography: Implications for Telemedicine or Virtual Clinics. Translational Vision Science and<br>Technology, 2019, 8, 16.  | 1.1 | 13        |
| 22 | Contrast sensitivity isocontours of the central visual field. Scientific Reports, 2019, 9, 11603.                                                                                                                        | 1.6 | 13        |
| 23 | The Frontloading Fields Study (FFS): Detecting Changes in Mean Deviation in Glaucoma Using Multiple<br>Visual Field Tests Per Clinical Visit. Translational Vision Science and Technology, 2021, 10, 21.                 | 1.1 | 12        |
| 24 | Application of Pattern Recognition Analysis to Optimize Hemifield Asymmetry Patterns for Early Detection of Glaucoma. Translational Vision Science and Technology, 2018, 7, 3.                                           | 1.1 | 11        |
| 25 | Differences in Static and Kinetic Perimetry Results are Eliminated in Retinal Disease when<br>Psychophysical Procedures are Equated. Translational Vision Science and Technology, 2018, 7, 22.                           | 1.1 | 10        |
| 26 | Modeling Changes in Corneal Parameters With Age: Implications for Corneal Disease Detection.<br>American Journal of Ophthalmology, 2020, 209, 117-131.                                                                   | 1.7 | 10        |
| 27 | The Frontloading Fields Study: The Impact of False Positives and Seeding Point Errors on Visual Field<br>Reliability When Using SITA-Faster. Translational Vision Science and Technology, 2022, 11, 20.                  | 1.1 | 10        |
| 28 | How Many Subjects are Needed for a Visual Field Normative Database? A Comparison of Ground Truth and Bootstrapped Statistics. Translational Vision Science and Technology, 2018, 7, 1.                                   | 1.1 | 8         |
| 29 | Atypical Features of Fuchs Uveitis Syndrome. Optometry and Vision Science, 2015, 92, e394-e403.                                                                                                                          | 0.6 | 7         |
| 30 | Determining Significant Elevation of Intraocular Pressure Using Self-tonometry. Optometry and Vision Science, 2020, 97, 86-93.                                                                                           | 0.6 | 7         |
| 31 | Gaze tracker parameters have little association with visual field metrics of intrasession frontloaded<br><scp>SITAâ€Faster</scp> 24–2 visual field results. Ophthalmic and Physiological Optics, 2022, 42, 973-985.      | 1.0 | 7         |
| 32 | Optimising the Structure-Function Relationship at the Locus of Deficit in Retinal Disease. Frontiers in Neuroscience, 2019, 13, 306.                                                                                     | 1.4 | 6         |
| 33 | Patient and technician perspectives following the introduction of frontloaded visual field testing in glaucoma assessment. Australasian journal of optometry, The, 2022, 105, 617-623.                                   | 0.6 | 6         |
| 34 | Clinical Evaluations of Macular Structure-Function Concordance With and Without Drasdo<br>Displacement. Translational Vision Science and Technology, 2022, 11, 18.                                                       | 1.1 | 6         |
| 35 | Adaptations of early career optometrists in clinical practice during the COVID-19 pandemic.<br>Australasian journal of optometry, The, 2021, 104, 728-733.                                                               | 0.6 | 5         |
| 36 | Neutralizing Peripheral Refraction Eliminates Refractive Scotomata in Tilted Disc Syndrome.<br>Optometry and Vision Science, 2018, 95, 959-970.                                                                          | 0.6 | 4         |

Јаск Рни

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Glaucoma Suspects: The Impact of Risk Factor-Driven Review Periods on Clinical Load, Diagnoses, and<br>Healthcare Costs. Translational Vision Science and Technology, 2022, 11, 37.                  | 1.1 | 4         |
| 38 | Headaches related to latanoprost in open-angle glaucoma. Australasian journal of optometry, The,<br>2021, 104, 1-9.                                                                                  | 0.6 | 3         |
| 39 | Deployment of the Water Drinking Test and iCare HOME Phasing for Intraocular Pressure Profiling in<br>Glaucoma Evaluation. Optometry and Vision Science, 2021, 98, 1321-1331.                        | 0.6 | 3         |
| 40 | Validation of a novel functional test for assessing metamorphopsia using epiretinal membranes as a model. Scientific Reports, 2020, 10, 14938.                                                       | 1.6 | 2         |
| 41 | Assessment of angle closure spectrum disease as a continuum of change using gonioscopy and anterior segment optical coherence tomography. Ophthalmic and Physiological Optics, 2020, 40, 617-631.    | 1.0 | 2         |
| 42 | Intraâ€session repeatability of anterior chamber depth across the chamber width using Pentacam<br>Scheimpflug imaging in healthy subjects. Ophthalmic and Physiological Optics, 2021, 41, 1273-1284. | 1.0 | 1         |
| 43 | Authors' reply. Ophthalmic and Physiological Optics, 2021, 41, 203-204.                                                                                                                              | 1.0 | 0         |
| 44 | The performance and confidence of clinicians in training in the analysis of ophthalmic images within a work fintegrated teaching model. Onthe and Physiological Ontics, 2021, 41, 768-781            | 1.0 | 0         |

44 workâ€integrated teaching model. Ophthalmic and Physiological Optics, 2021, 41, 768-781.