
Miriam D Hubinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7149310/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rehydration of mango powders produced by cast-tape drying, freeze drying, and spray drying. Drying Technology, 2022, 40, 175-187.	1.7	15
2	Serial fractionation of spent brewer's yeast protein hydrolysate by ultrafiltration: A peptide-rich product with low RNA content. Journal of Food Engineering, 2022, 312, 110737.	2.7	15
3	Characterization of Capsicum oleoresin microparticles and in vivo evaluation of short-term capsaicin intake. Food Chemistry: X, 2022, 13, 100179.	1.8	3
4	Physicochemical Properties of Capsicum Oleoresin Emulsions Stabilized by Gum Arabic, OSA-Modified Corn Starch, and Modified Malt. Food and Bioprocess Technology, 2022, 15, 474-485.	2.6	3
5	Supercritical fluids and fluid mixtures to obtain high-value compounds from Capsicum peppers. Food Chemistry: X, 2022, 13, 100228.	1.8	12
6	Microencapsulation of hibiscus bioactives and its application in yogurt. Journal of Food Processing and Preservation, 2022, 46, .	0.9	4
7	Spice oleoresins as value-added ingredient for food industry: Recent advances and perspectives Trends in Food Science and Technology, 2022, 122, 123-139.	7.8	18
8	Low-frequency ultrasound-assisted esterification of Bixa orellana L. seed starch with octenyl succinic anhydride. International Journal of Biological Macromolecules, 2022, 207, 1-8.	3.6	5
9	Thermo-rheological properties of chitosan hydrogels with hydroxypropyl methylcellulose and methylcellulose. International Journal of Biological Macromolecules, 2022, 209, 367-375.	3.6	20
10	Protein-based strategies for fat replacement: Approaching different protein colloidal types, structured systems and food applications. Food Research International, 2022, 156, 111346.	2.9	19
11	The porosity of carbohydrate-based spray-dried microparticles containing limonene stabilized by pea protein: Correlation between porosity and oxidative stability. Current Research in Food Science, 2022, 5, 878-885.	2.7	7
12	Storage Stability of Conventional and High Internal Phase Emulsions Stabilized Solely by Chickpea Aquafaba. Foods, 2022, 11, 1588.	1.9	12
13	Effect of chia oil and pea protein content on stability of emulsions obtained by ultrasound and powder production by spray drying. Journal of Food Science and Technology, 2021, 58, 3765-3779.	1.4	7
14	Effect of modified starches and gum arabic on the stability of carotenoids in paprika oleoresin microparticles. Drying Technology, 2021, 39, 1927-1940.	1.7	11
15	Protection and targeted delivery of β-carotene by starch-alginate-gelatin emulsion-filled hydrogels. Journal of Food Engineering, 2021, 290, 110205.	2.7	43
16	Spent brewer's yeast proteins and cell debris as innovative emulsifiers and carrier materials for edible oil microencapsulation. Food Research International, 2021, 140, 109853.	2.9	14
17	Model infant formulas: Influence of types of whey proteins and oil composition on emulsion and powder properties. Journal of Food Engineering, 2021, 292, 110256.	2.7	11
18	Shelf life of cashew nut kernels packed in banana starchâ€based nanocomposites. International Journal of Food Science and Technology, 2021, 56, 3682-3690.	1.3	7

#	Article	lF	CITATIONS
19	Application of nano/microencapsulated ingredients in meat products. , 2021, , 305-343.		2
20	Barley Malt Esterification after Ultrasound and Stearic Acid Treatment: Characterization and Use as Stabilizing Agent in Oil-in-Water Emulsions. Food and Bioprocess Technology, 2021, 14, 310-323.	2.6	4
21	Solid lipid microparticles loaded with ascorbic acid: Release kinetic profile during thermal stability. Journal of Food Processing and Preservation, 2021, 45, e15557.	0.9	5
22	Ultrafiltration performance of spent brewer's yeast protein hydrolysate: Impact of pH and membrane material on fouling. Journal of Food Engineering, 2021, 302, 110569.	2.7	15
23	In vitro dynamic digestion of model infant formulae containing lactoferrin and medium chain triacylglycerols. Food Hydrocolloids, 2021, 118, 106787.	5.6	10
24	Effect of pH and Pea Protein: Xanthan Gum Ratio on Emulsions with High Oil Content and High Internal Phase Emulsion Formation. Molecules, 2021, 26, 5646.	1.7	15
25	Spray drying of mono- and double-layer emulsions of PUFA-rich vegetable oil homogenized by ultrasound. Drying Technology, 2021, 39, 868-881.	1.7	22
26	Membrane Fractionation of Protein Hydrolysates from By-Products: Recovery of Valuable Compounds from Spent Yeasts. Membranes, 2021, 11, 23.	1.4	25
27	Cinnamon and paprika oleoresin emulsions: A study of physicochemical stability and antioxidant synergism. Food Research International, 2021, 150, 110777.	2.9	12
28	In vitro bioactivity approach of unripe genipap (Genipa americana L., Rubiaceae) fruit extract and its solid lipid microparticle. Food Research International, 2020, 127, 108720.	2.9	10
29	Proteolytic enzymes positively modulated the physicochemical and antioxidant properties of spent yeast protein hydrolysates. Process Biochemistry, 2020, 91, 34-45.	1.8	29
30	Encapsulation of Pomegranate Seed Oil by Emulsification Followed by Spray Drying: Evaluation of Different Biopolymers and Their Effect on Particle Properties. Food and Bioprocess Technology, 2020, 13, 53-66.	2.6	45
31	Plant proteins at low concentrations as natural emulsifiers for an effective orange essential oil microencapsulation by spray drying. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125470.	2.3	37
32	Application of Complex Chitosan Hydrogels Added With Canola Oil in Partial Substitution of Cocoa Butter in Dark Chocolate. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	5
33	Production of resveratrol loaded alginate aerogel: Characterization, mathematical modeling, and study of impregnation. Journal of Supercritical Fluids, 2020, 163, 104882.	1.6	13
34	Encapsulation of resveratrol using Maillard conjugates and membrane emulsification. Food Research International, 2020, 137, 109359.	2.9	16
35	Concentration of bioactive compounds from grape marc using pressurized liquid extraction followed by integrated membrane processes. Separation and Purification Technology, 2020, 250, 117206.	3.9	20
36	Encapsulation of wheat germ oil in alginateâ€gelatinized corn starch beads: Physicochemical properties and tocopherols' stability. Journal of Food Science, 2020, 85, 2124-2133.	1.5	12

#	Article	IF	CITATIONS
37	Spent brewer's yeast as a source of high added value molecules: a systematic review on its characteristics, processing and potential applications. World Journal of Microbiology and Biotechnology, 2020, 36, 95.	1.7	45
38	Maillard conjugates from spent brewer's yeast by-product as an innovative encapsulating material. Food Research International, 2020, 136, 109365.	2.9	27
39	High internal phase emulsions (HIPE) using pea protein and different polysaccharides as stabilizers. Food Hydrocolloids, 2020, 105, 105775.	5.6	78
40	Alginate and corn starch mixed gels: Effect of gelatinization and amylose content on the properties and in vitro digestibility. Food Research International, 2020, 132, 109069.	2.9	35
41	Influence of heated, unheated whey protein isolate and its combination with modified starch on improvement of encapsulated pomegranate seed oil oxidative stability. Food Chemistry, 2020, 326, 126995.	4.2	20
42	Stability of Hibiscus Extract Encapsulated by Ionic Gelation Incorporated in Yogurt. Food and Bioprocess Technology, 2019, 12, 1500-1515.	2.6	46
43	Gelatin edible coatings with mint essential oil (Mentha arvensis): film characterization and antifungal properties. Journal of Food Science and Technology, 2019, 56, 4045-4056.	1.4	67
44	Complexation of chitosan with gum Arabic, sodium alginate and κ-carrageenan: Effects of pH, polymer ratio and salt concentration. Carbohydrate Polymers, 2019, 223, 115120.	5.1	42
45	Sequential hydrolysis of spent brewer's yeast improved its physico-chemical characteristics and antioxidant properties: A strategy to transform waste into added-value biomolecules. Process Biochemistry, 2019, 84, 91-102.	1.8	43
46	Resveratrol-loaded microparticles: Assessing Maillard conjugates as encapsulating matrices. Powder Technology, 2019, 353, 247-256.	2.1	13
47	Sacha inchi oil encapsulation: Emulsion and alginate beads characterization. Food and Bioproducts Processing, 2019, 116, 118-129.	1.8	24
48	Release of anthocyanins from the hibiscus extract encapsulated by ionic gelation and application of microparticles in jelly candy. Food Research International, 2019, 121, 542-552.	2.9	67
49	Characterization of ascorbic acid microencapsulated by the spray chilling technique using palm oil and fully hydrogenated palm oil. LWT - Food Science and Technology, 2019, 101, 306-314.	2.5	25
50	Anthocyanins from jussara (Euterpe edulis Martius) extract carried by calcium alginate beads pre-prepared using ionic gelation. Powder Technology, 2019, 345, 283-291.	2.1	67
51	Production of Thermal-Resistant Cornstarch-Alginate Beads by Dripping Agglomeration. International Journal of Food Engineering, 2018, 14, .	0.7	13
52	Influence of nanofiltration membrane features on enrichment of jussara ethanolic extract (Euterpe) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
53	The influence of the storage temperature on the stability of lipid microparticles containing ginger oleoresin. Food Research International, 2018, 109, 472-480.	2.9	17

Encapsulating anthocyanins from Hibiscus sabdariffa L. calyces by ionic gelation: Pigment stability
during storage of microparticles. Food Chemistry, 2018, 241, 317-327.

#	Article	IF	CITATIONS
55	Concentration of hydroalcoholic extracts of graviola (Annona muricata L.) pruning waste by ultra and nanofiltration: Recovery of bioactive compounds and prediction of energy consumption. Journal of Cleaner Production, 2018, 174, 1412-1421.	4.6	11
56	Properties of films produced from blends of pectin and gluten. Food Packaging and Shelf Life, 2018, 18, 221-229.	3.3	56
5 7	Mono and double-layer emulsions of chia oil produced with ultrasound mediation. Food and Bioproducts Processing, 2018, 112, 108-118.	1.8	18
58	Sprayâ€Drying of Milk–Blackberry Pulp Mixture: Effect of Carrier Agent on the Physical Properties of Powder, Water Sorption, and Glass Transition Temperature. Journal of Food Science, 2018, 83, 1650-1659.	1.5	22
59	Chitosan coated nanostructured lipid carriers (NLCs) for loading Vitamin D: A physical stability study. International Journal of Biological Macromolecules, 2018, 119, 902-912.	3.6	61
60	Survival variability of 12 strains of Bacillus cereus yielded to spray drying of whole milk. International Journal of Food Microbiology, 2018, 286, 80-89.	2.1	16
61	Quantifying the Responses of Three Bacillus cereus Strains in Isothermal Conditions and During Spray Drying of Different Carrier Agents. Frontiers in Microbiology, 2018, 9, 1113.	1.5	15
62	Solid lipid microparticles loaded with cinnamon oleoresin: Characterization, stability and antimicrobial activity. Food Research International, 2018, 113, 351-361.	2.9	28
63	Comparison of microparticles produced with combinations of gelatin, chitosan and gum Arabic. Carbohydrate Polymers, 2018, 196, 427-432.	5.1	25
64	Sodium caseinate-corn starch hydrolysates conjugates obtained through the Maillard reaction as stabilizing agents in resveratrol-loaded emulsions. Food Hydrocolloids, 2018, 84, 458-472.	5.6	83
65	Measurement and PC-SAFT modeling of solid-liquid equilibrium of deep eutectic solvents of quaternary ammonium chlorides and carboxylic acids. Fluid Phase Equilibria, 2017, 448, 69-80.	1.4	88
66	Sensory acceptance evaluation of a new food flavoring produced by microencapsulation of a mussel (Perna perna) protein hydrolysate. LWT - Food Science and Technology, 2017, 83, 141-149.	2.5	32
67	Determination of anthocyanins and non-anthocyanin polyphenols by ultra performance liquid chromatography/electrospray ionization mass spectrometry (UPLC/ESI–MS) in jussara (Euterpe edulis) extracts. Journal of Food Science and Technology, 2017, 54, 2135-2144.	1.4	35
68	Volatile composition and physicochemical characteristics of mussel (Perna perna) protein hydrolysate microencapsulated with maltodextrin and n-OSA modified starch. Food and Bioproducts Processing, 2017, 105, 12-25.	1.8	20
69	Hydrophilic food compounds encapsulation by ionic gelation. Current Opinion in Food Science, 2017, 15, 50-55.	4.1	69
70	High solids emulsions produced by ultrasound as a function of energy density. Ultrasonics Sonochemistry, 2017, 38, 772-782.	3.8	29
71	Cellulose acetate/cellulose nanofiber membranes for whey and fruit juice microfiltration. Cellulose, 2017, 24, 5593-5604.	2.4	22
72	Production of mango powder by spray drying and cast-tape drying. Powder Technology, 2017, 305, 447-454.	2.1	102

#	Article	IF	CITATIONS
73	Structural and emulsifying properties of sodium caseinate and lactoferrin influenced by ultrasound process. Food Hydrocolloids, 2017, 63, 178-188.	5.6	86
74	Implications of Non-Equilibrium States and Glass Transitions in Frozen and Dried Fish and Meat Products. , 2017, , 325-348.		3
75	Physical properties and morphology of spray dried microparticles containing anthocyanins of jussara (Euterpe edulis Martius) extract. Powder Technology, 2016, 294, 421-428.	2.1	80
76	Spray dried microparticles of chia oil using emulsion stabilized by whey protein concentrate and pectin by electrostatic deposition. Food Research International, 2016, 89, 549-557.	2.9	55
77	Ultrasound assisted extraction and nanofiltration of phenolic compounds from artichoke solid wastes. Journal of Food Engineering, 2016, 178, 170-180.	2.7	66
78	Solid lipid microparticles produced by spray chilling technique to deliver ginger oleoresin: Structure and compound retention. Food Research International, 2016, 80, 41-49.	2.9	45
79	Ultrasound-assisted encapsulation of annatto seed oil: Whey protein isolate versus modified starch. Food Hydrocolloids, 2016, 56, 71-83.	5.6	86
80	Clarification and concentration of oligosaccharides from artichoke extract by a sequential process with microfiltration and nanofiltration membranes. Journal of Food Engineering, 2016, 180, 120-128.	2.7	49
81	Gallic acid microparticles produced by spray chilling technique: Production and characterization. LWT - Food Science and Technology, 2016, 65, 79-87.	2.5	53
82	Thermodynamic Properties of Water Desorption of Papaya. Journal of Food Processing and Preservation, 2015, 39, 2412-2420.	0.9	7
83	Development of Active Films From Pectin and Fruit Extracts: Light Protection, Antioxidant Capacity, and Compounds Stability. Journal of Food Science, 2015, 80, C2389-96.	1.5	76
84	Ultrasound-assisted formation of annatto seed oil emulsions stabilized by biopolymers. Food Hydrocolloids, 2015, 47, 1-13.	5.6	108
85	Prebiotic oligosaccharides from artichoke industrial waste: evaluation of different extraction methods. Industrial Crops and Products, 2015, 76, 141-148.	2.5	47
86	Evaluation of pequi (Caryocar Brasiliense Camb.) aqueous extract quality processed by membranes. Food and Bioproducts Processing, 2015, 95, 304-312.	1.8	30
87	Ascorbic acid microencapsulation by spray chilling: Production and characterization. LWT - Food Science and Technology, 2015, 63, 353-360.	2.5	45
88	Alginate and pectin-based particles coated with globular proteins: Production, characterization and anti-oxidative properties. Food Hydrocolloids, 2015, 43, 670-678.	5.6	27
89	Functional bread with n-3 alpha linolenic acid from whole chia (Salvia hispanica L.) flour. Journal of Food Science and Technology, 2015, 52, 4475-4482.	1.4	26
90	Spray Drying of Blue Shark Skin Protein Hydrolysate: Physical, Morphological, and Antioxidant Properties. Drying Technology, 2014, 32, 1986-1996.	1.7	17

#	Article	IF	CITATIONS
91	Ascorbic acid degradation of papaya during drying: Effect of process conditions and glass transition phenomenon. Journal of Food Engineering, 2014, 123, 157-164.	2.7	60
92	Evaluation of edible films and coatings formulated with cassava starch, glycerol, carnauba wax and stearic acid. Food Hydrocolloids, 2014, 38, 20-27.	5.6	199
93	Properties of Cassava Starchâ€Based Edible Coating Containing Essential Oils. Journal of Food Science, 2014, 79, E189-94.	1.5	65
94	Microencapsulation by spray drying of emulsified green coffee oil with two-layered membranes. Food Research International, 2014, 61, 236-245.	2.9	77
95	Influence of different combinations of wall materials and homogenisation pressure on the microencapsulation of green coffee oil by spray drying. Food Research International, 2014, 61, 132-143.	2.9	78
96	Mass transfer kinetics and mathematical modelling of the osmotic dehydration of orangeâ€fleshed honeydew melon in corn syrup and sucrose solutions. International Journal of Food Science and Technology, 2013, 48, 2463-2473.	1.3	25
97	Study of alcoholic and aqueous extraction of pequi (Caryocar brasiliense Camb.) natural antioxidants and extracts concentration by nanofiltration. Journal of Food Engineering, 2013, 117, 450-457.	2.7	60
98	Influence of drying conditions on the gelling properties of the 7S and 11S soy protein fractions. Food and Bioproducts Processing, 2013, 91, 111-120.	1.8	23
99	Effect of Osmotic Dehydration and Pectin Edible Coatings on Quality and Shelf Life of Fresh-Cut Melon. Food and Bioprocess Technology, 2013, 6, 80-91.	2.6	73
100	Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, 2013, 115, 443-451.	2.7	702
101	Chemical and economic evaluation of natural antioxidant extracts obtained by ultrasound-assisted and agitated bed extraction from jussara pulp (Euterpe edulis). Journal of Food Engineering, 2013, 119, 196-204.	2.7	77
102	Effect of Pulsed Vacuum Treatment on Mass Transfer and Mechanical Properties during Osmotic Dehydration of Pineapple Slices. International Journal of Food Engineering, 2013, 9, 403-412.	0.7	17
103	Wall Material Selection for Encapsulation by Spray Drying. Journal of Colloid Science and Biotechnology, 2013, 2, 86-92.	0.2	10
104	Influence of Emulsion Properties on the Microencapsulation of Orange Essential Oil by Spray Drying. Journal of Colloid Science and Biotechnology, 2013, 2, 130-139.	0.2	25
105	Water Sorption and Glass Transition Temperature of Spray-Dried Mussel Meat Protein Hydrolysate. Drying Technology, 2012, 30, 175-184.	1.7	14
106	Antioxidant activity and polyphenol contents in <scp>B</scp> razilian green propolis extracts prepared with the use of ethanol and water as solvents in different p <scp>H</scp> values. International Journal of Food Science and Technology, 2012, 47, 2510-2518.	1.3	64
107	Effect of process conditions on the microencapsulation of coffee oil by spray drying. Food and Bioproducts Processing, 2012, 90, 413-424.	1.8	298
108	Effect of Homogenization Pressure and Oil Load on the Emulsion Properties and the Oil Retention of Microencapsulated Basil Essential Oil (<i>Ocimum basilicum</i> L.). Drying Technology, 2012, 30, 1413-1421.	1.7	43

#	Article	IF	CITATIONS
109	Microencapsulation of Flaxseed Oil by Spray Drying: Effect of Oil Load and Type of Wall Material. Drying Technology, 2012, 30, 1491-1501.	1.7	138
110	Determination of critical storage conditions of coffee oil microcapsules by coupling water sorption isotherms and glass transition temperature. International Journal of Food Science and Technology, 2012, 47, 1044-1054.	1.3	32
111	Effect of process variables on the osmotic dehydration of star-fruit slices. Food Science and Technology, 2012, 32, 357-365.	0.8	13
112	Effect of Antimicrobial Starch Edible Coating on Shelf‣ife of Fresh Strawberries. Packaging Technology and Science, 2012, 25, 413-425.	1.3	56
113	Influence of Carrier Agents on the Physicochemical Properties of Mussel Protein Hydrolysate Powder. Drying Technology, 2012, 30, 653-663.	1.7	19
114	Optimisation of osmotic dehydration process of guavas by response surface methodology and desirability function. International Journal of Food Science and Technology, 2012, 47, 132-140.	1.3	48
115	Stability, solubility, mechanical and barrier properties of cassava starch – Carnauba wax edible coatings to preserve fresh-cut apples. Food Hydrocolloids, 2012, 28, 59-67.	5.6	157
116	Glass transition phenomenon on shrinkage of papaya during convective drying. Journal of Food Engineering, 2012, 108, 43-50.	2.7	90
117	Stress Relaxation of Acid-induced Milk Gels. Food and Bioprocess Technology, 2012, 5, 508-518.	2.6	4
118	Spray Drying of Chicken Meat Protein Hydrolysate: Influence of Process Conditions on Powder Property and Dryer Performance. Drying Technology, 2011, 29, 163-173.	1.7	33
119	Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Research International, 2011, 44, 282-289.	2.9	421
120	Fresh cut â€~Tommy Atkins' mango pre-treated with citric acid and coated with cassava (Manihot) Tj ETQqO O 2011, 12, 381-387.	0 rgBT /Ov 2.7	verlock 10 7 69
121	Modelling of mass transfer and texture evaluation during osmotic dehydration of melon under vacuum. International Journal of Food Science and Technology, 2011, 46, 436-443.	1.3	36
122	SPRAY DRYING OF AÇAI (EUTERPE OLERACEAE MART.) JUICE: EFFECT OF INLET AIR TEMPERATURE AND TYPE OF CARRIER AGENT. Journal of Food Processing and Preservation, 2011, 35, 691-700.	0.9	114
123	Effect of Cassava Starch Coating on Quality and Shelf Life of Freshâ€Cut Pineapple (<i>Ananas) Tj ETQq1 1 0.784</i>	314 rgBT / 1.5	Qyerlock 10
124	Optimization of the Enzymatic Hydrolysis of Blue Shark Skin. Journal of Food Science, 2011, 76, C938-49.	1.5	19
125	Propriedades mecânicas e estrutura celular de melão desidratado osmoticamente em soluções de sacarose ou maltose, com adição de lactato de cálcio. Ciencia E Agrotecnologia, 2011, 35, 765-773.	1.5	6
126	Selection of an Edible Starch Coating for Minimally Processed Strawberry. Food and Bioprocess Technology, 2010, 3, 834-842.	2.6	73

#	Article	IF	CITATIONS
127	Mass transfer kinetics of pulsed vacuum osmotic dehydration of guavas. Journal of Food Engineering, 2010, 96, 498-504.	2.7	119
128	Concentration of flavonoids and phenolic compounds in aqueous and ethanolic propolis extracts through nanofiltration. Journal of Food Engineering, 2010, 96, 533-539.	2.7	152
129	Optimization of the Enzymatic Hydrolysis of Mussel Meat. Journal of Food Science, 2010, 75, C36-42.	1.5	36
130	Cassava Starch Coating and Citric Acid to Preserve Quality Parameters of Fresh ut "Tommy Atkins― Mango. Journal of Food Science, 2010, 75, E297-304.	1.5	80
131	Calcium Lactate Effect on the Shelf Life of Osmotically Dehydrated Guavas. Journal of Food Science, 2010, 75, E612-9.	1.5	7
132	Desempenho do processo de concentração de extratos de própolis por nanofiltração. Food Science and Technology, 2010, 30, 166-172.	0.8	11
133	Análise sensorial de músculo de mapará com e sem tratamento osmótico. Food Science and Technology, 2010, 30, 24-32.	0.8	Ο
134	Structural Changes, Mechanical Properties and Sensory Preference of Osmodehydrated Melon Pieces with Sucrose and Calcium Lactate Solutions. International Journal of Food Properties, 2010, 13, 112-130.	1.3	26
135	Anthocyanin stability and antioxidant activity of spray-dried açai (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Research International, 2010, 43, 907-914.	2.9	438
136	Influência da temperatura do ar de secagem e da concentração de agente carreador sobre as propriedades fÃsico-quÃmicas do suco de açaÃ-em pÃ3. Food Science and Technology, 2009, 29, 444-450.	0.8	60
137	Influência das condições de processo na cinética de hidrólise enzimática de carne de frango. Food Science and Technology, 2009, 29, 557-566.	0.8	4
138	Isotermas de dessorção de filé de bonito (Sarda sarda) desidratado osmoticamente e defumado. Revista Brasileira De Engenharia Agricola E Ambiental, 2009, 13, 305-311.	0.4	8
139	Water sorption and glass transition temperature of spray dried açai (Euterpe oleracea Mart.) juice. Journal of Food Engineering, 2009, 94, 215-221.	2.7	197
140	Physicochemical and morphological characterisation of açai (<i>Euterpe oleraceae</i> Mart.) powder produced with different carrier agents. International Journal of Food Science and Technology, 2009, 44, 1950-1958.	1.3	221
141	Effect of maltodextrin and gum arabic on water sorption and glass transition temperature of spray dried chicken meat hydrolysate protein. Journal of Food Engineering, 2009, 91, 287-296.	2.7	90
142	Steady and dynamic shear rheological properties of açai pulp (Euterpe oleraceae Mart.). Journal of Food Engineering, 2009, 92, 425-431.	2.7	64
143	Effect of carrier agents on the physicochemical properties of a spray dried chicken meat protein hydrolysate. Journal of Food Engineering, 2009, 94, 326-333.	2.7	85
144	Microscopic features, mechanical and thermal properties of osmotically dehydrated guavas. LWT - Food Science and Technology, 2009, 42, 378-384.	2.5	25

#	Article	IF	CITATIONS
145	Influence of Spray Drying Conditions on Physicochemical Properties of Chicken Meat Powder. Drying Technology, 2009, 27, 1248-1257.	1.7	82
146	Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. Journal of Food Engineering, 2008, 88, 411-418.	2.7	681
147	Optimization of the Enzymatic Hydrolysis of Chicken Meat Using Response Surface Methodology. Journal of Food Science, 2008, 73, C405-12.	1.5	48
148	Evaluation of the mechanical properties and diffusion coefficients of osmodehydrated melon cubes. International Journal of Food Science and Technology, 2008, 43, 2065-2074.	1.3	31
149	Otimização da desidratação osmótica de filés de mapará (Hypophthalmus edentatus) através da metodologia de superfÃcie de resposta. Food Science and Technology, 2008, 28, 485-492.	0.8	2
150	Effect of High Temperature on Shrinkage and Porosity of Crispy Dried Bananas. Food Engineering Series, 2008, , 367-373.	0.3	0
151	Denaturation and the Glass Transition Temperatures of Myofibrillar Proteins from Osmotically Dehydrated Tilapia: Effect of Sodium Chloride and Sucrose. International Journal of Food Properties, 2007, 10, 791-805.	1.3	11
152	Influence of Process Conditions on the Mass Transfer Kinetics of Pulsed Vacuum Osmotically Dehydrated Mango Slices. Drying Technology, 2007, 25, 1769-1777.	1.7	37
153	Effect of calcium salts on the texture, structure and sensory acceptance of osmotically dehydrated guavas. Journal of the Science of Food and Agriculture, 2007, 87, 1149-1156.	1.7	17
154	Changes in the physical properties of bananas on applying HTST pulse during air-drying. Journal of Food Engineering, 2007, 83, 531-540.	2.7	27
155	Osmotic dehydration of tomato in ternary solutions: Influence of process variables on mass transfer kinetics and an evaluation of the retention of carotenoids. Journal of Food Engineering, 2007, 82, 509-517.	2.7	69
156	Kinetic Aspects, Texture, and Color Evaluation of Some Tropical Fruits during Osmotic Dehydration. Drying Technology, 2006, 24, 475-484.	1.7	57
157	Estudo da desidratação osmótica de tomate em soluções ternárias pela metodologia de superfÃcie de resposta. Food Science and Technology, 2006, 26, 715-723.	0.8	7
158	The effects of sucrose on the mechanical properties of acid milk proteins-kappa-carrageenan gels. Brazilian Journal of Chemical Engineering, 2006, 23, 55-65.	0.7	10
159	IMPACT OF MODIFIED ATMOSPHERE PACKAGING ON THE OSMODEHYDRATED PAPAYA STABILITY. Journal of Food Processing and Preservation, 2006, 30, 563-581.	0.9	16
160	Conservação do açaÃ-pela tecnologia de obstáculos. Food Science and Technology, 2004, 24, 114-119.	0.8	39
161	Influence of Modified Atmosphere Packaging and Osmotic Dehydration on the Quality Maintenance of Minimally Processed Guavas. Journal of Food Science, 2004, 69, FEP172-FEP177.	1.5	50
162	Rheological properties and colour evaluation of papaya during osmotic dehydration processing. Journal of Food Engineering, 2003, 59, 129-135.	2.7	47

#	Article	IF	CITATIONS
163	Vida-de-prateleira de goiabas minimamente processadas acondicionadas em embalagens sob atmosfera modificada. Food Science and Technology, 2003, 23, 427-433.	0.8	23
164	Qualidade final de melão osmoticamente desidratado em soluções de sacarose com adição de ácidos. Pesquisa Agropecuaria Brasileira, 2002, 37, 1803-1810.	0.9	2
165	Thermal transitions of osmotically dehydrated tomato by modulated temperature differential scanning calorimetry. Thermochimica Acta, 2002, 395, 237-249.	1.2	19
166	Osmotic dehydration of tilapia fillets in limited volume of ternary solutions. Chemical Engineering Journal, 2002, 86, 199-205.	6.6	41
167	Prediction of water activity of osmotic solutions. Journal of Food Engineering, 2001, 49, 103-114.	2.7	70
168	Mechanical, water vapor barrier and thermal properties of gelatin based edible films. Food Hydrocolloids, 2001, 15, 423-432.	5.6	500
169	MASS TRANSFER AND DIFFUSION COEFFICIENT DETERMINATION IN THE WET AND DRY SALTING OF MEAT. Drying Technology, 1998, 16, 2095-2115.	1.7	42
170	DRYING OF ONION: EFFECTS OF PRETREATMENT ON MOISTURE TRANSPORT. Drying Technology, 1998, 16, 2083-2094.	1.7	36
171	Water Vapor Adsorption Isotherms of Guava, Mango and Pineapple. Journal of Food Science, 1992, 57, 1405-1407.	1.5	47
172	Efeito do processo de desidratação osmótica a pulso de vácuo na transferência de massa e nas propriedades reológicas e de cor de fatias de manga. Food Science and Technology, 0, 27, 54-63.	0.8	9
173	Vida útil de fatias de manga armazenadas em embalagem com atmosfera modificada passiva. Food Science and Technology, 0, 28, 271-278.	0.8	9
174	Estabilidade dos carotenóides e propriedades fÃsico-quÃmicas da oleoresina de páprica microencapsulada por spray drying. , 0, , .		0