Sebastien Rochat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7149238/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of pore geometry on ultra-densified hydrogen in microporous carbons. Carbon, 2021, 173, 968-979.	10.3	25
2	Solvent Sorption-Induced Actuation of Composites Based on a Polymer of Intrinsic Microporosity. ACS Applied Polymer Materials, 2021, 3, 920-928.	4.4	8
3	Enhancement of gas storage and separation properties of microporous polymers by simple chemical modifications. Multifunctional Materials, 2021, 4, 025002.	3.7	5
4	Chemical modification of the polymer of intrinsic microporosity PIM-1 for enhanced hydrogen storage. Adsorption, 2020, 26, 1083-1091.	3.0	16
5	Lock-and-Key Exciplexes for Thermally Activated Delayed Fluorescence. Organic Materials, 2020, 02, 001-010.	2.0	7
6	Nanoporous polymer-based composites for enhanced hydrogen storage. Adsorption, 2019, 25, 889-901.	3.0	24
7	Polymer of Intrinsic Microporosity (PIMâ€7) Coating Affects Triphasic Palladium Electrocatalysis. ChemElectroChem, 2019, 6, 4307-4317.	3.4	9
8	Assessment of the long-term stability of the polymer of intrinsic microporosity PIM-1 for hydrogen storage applications. International Journal of Hydrogen Energy, 2019, 44, 332-337.	7.1	17
9	AFM imaging and nanoindentation of polymer of intrinsic microporosity PIM-1. International Journal of Hydrogen Energy, 2017, 42, 23915-23919.	7.1	12
10	Hydrogen storage in polymer-based processable microporous composites. Journal of Materials Chemistry A, 2017, 5, 18752-18761.	10.3	43
11	Nanodräte in Chemo―und Biosensoren: aktueller Stand und Fahrplan für die Zukunft. Angewandte Chemie, 2016, 128, 1286-1302.	2.0	10
12	Nanowire Chemical/Biological Sensors: Status and a Roadmap for the Future. Angewandte Chemie - International Edition, 2016, 55, 1266-1281.	13.8	237
13	Fluorescence Sensing of Amine Vapors Using a Cationic Conjugated Polymer Combined with Various Anions. Angewandte Chemie - International Edition, 2014, 53, 9792-9796.	13.8	96
14	Water-Soluble Cationic Conjugated Polymers: Response to Electron-Rich Bioanalytes. Journal of the American Chemical Society, 2013, 135, 17703-17706.	13.7	54
15	Conjugated Amplifying Polymers for Optical Sensing Applications. ACS Applied Materials & Interfaces, 2013, 5, 4488-4502.	8.0	345
16	Fluorescence sensing of caffeine in water with polysulfonated pyrenes. Chemical Communications, 2011, 47, 10584.	4.1	43
17	A simple fluorescence assay for the detection of fluoride in water at neutral pH. Chemical Communications, 2011, 47, 4391.	4.1	69
18	Crossâ€Reactive Sensor Arrays for the Detection of Peptides in Aqueous Solution by Fluorescence Spectroscopy. Chemistry - A European Journal, 2010, 16, 104-113.	3.3	68

SEBASTIEN ROCHAT

#	Article	IF	CITATIONS
19	A Simple Assay for the Fluorometric Detection of Lithium Ions in Aqueous Solution. Chemistry - A European Journal, 2010, 16, 5013-5017.	3.3	27
20	Fluorescence Sensors for Lithium Ions and Small Peptides. Chimia, 2010, 64, 150-152.	0.6	1
21	Pattern-Based Sensing with Metalâ^'Dye Complexes: Sensor Arrays versus Dynamic Combinatorial Libraries. ACS Combinatorial Science, 2010, 12, 595-599.	3.3	37
22	Ruthenium-based metallacrown complexes for the selective detection of lithium ions in water and in serum by fluorescence spectroscopy. Organic and Biomolecular Chemistry, 2009, 7, 1147.	2.8	44
23	Influence of Hydrogen-Bonding Substituents on the Cytotoxicity of RAPTA Compounds. Organometallics, 2006, 25, 756-765.	2.3	154