Kim M Pepin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7148574/publications.pdf

Version: 2024-02-01

331670 254184 2,317 73 21 citations h-index papers

g-index 79 79 79 3028 docs citations times ranked citing authors all docs

43

#	Article	IF	CITATIONS
1	Epidemic Dynamics at the Human-Animal Interface. Science, 2009, 326, 1362-1367.	12.6	554
2	Geographic Variation in the Relationship between Human Lyme Disease Incidence and Density of Infected Host-Seeking Ixodes scapularis Nymphs in the Eastern United States. American Journal of Tropical Medicine and Hygiene, 2012, 86, 1062-1071.	1.4	141
3	Identifying genetic markers of adaptation for surveillance of viral host jumps. Nature Reviews Microbiology, 2010, 8, 802-813.	28.6	138
4	Ecological interventions to prevent and manage zoonotic pathogen spillover. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180342.	4.0	102
5	Quantifying drivers of wild pig movement across multiple spatial and temporal scales. Movement Ecology, 2017, 5, 14.	2.8	75
6	Ecological drivers of African swine fever virus persistence in wild boar populations: Insight for control. Ecology and Evolution, 2020, 10, 2846-2859.	1.9	60
7	Improving pandemic influenza risk assessment. ELife, 2014, 3, e03883.	6.0	53
8	Inferring infection hazard in wildlife populations by linking data across individual and population scales. Ecology Letters, 2017, 20, 275-292.	6.4	50
9	Genomic evolution in a virus under specific selection for host recognition. Infection, Genetics and Evolution, 2008, 8, 825-834.	2.3	47
10	Effects of scale of movement, detection probability, and true population density on common methods of estimating population density. Scientific Reports, 2017, 7, 9446.	3.3	47
11	Cost-effectiveness of Novel System of Mosquito Surveillance and Control, Brazil. Emerging Infectious Diseases, 2013, 19, 542-550.	4.3	46
12	Multiannual patterns of influenza A transmission in Chinese live bird market systems. Influenza and Other Respiratory Viruses, 2013, 7, 97-107.	3.4	41
13	Inferring invasive species abundance using removal data from management actions. Ecological Applications, 2016, 26, 2339-2346.	3.8	36
14	Contact heterogeneities in feral swine: implications for disease management and future research. Ecosphere, 2016, 7, e01230.	2.2	35
15	Potential effects of incorporating fertility control into typical culling regimes in wild pig populations. PLoS ONE, 2017, 12, e0183441.	2.5	33
16	Confronting models with data: the challenges of estimating disease spillover. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180435.	4.0	30
17	Variable Pleiotropic Effects From Mutations at the Same Locus Hamper Prediction of Fitness From a Fitness Component. Genetics, 2006, 172, 2047-2056.	2.9	29
18	Variation in host home range size decreases rabies vaccination effectiveness by increasing the spatial spread of rabies virus. Journal of Animal Ecology, 2020, 89, 1375-1386.	2.8	28

#	Article	IF	CITATIONS
19	Invasion of two tick-borne diseases across New England: harnessing human surveillance data to capture underlying ecological invasion processes. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160834.	2.6	26
20	Accounting for observation processes across multiple levels of uncertainty improves inference of species distributions and guides adaptive sampling of environmental <scp>DNA</scp> . Ecology and Evolution, 2018, 8, 10879-10892.	1.9	25
21	Modelling multiâ€species and multiâ€mode contact networks: Implications for persistence of bovine tuberculosis at the wildlife–livestock interface. Journal of Applied Ecology, 2019, 56, 1471-1481.	4.0	24
22	Synthesizing within-host and population-level selective pressures on viral populations: the impact of adaptive immunity on viral immune escape. Journal of the Royal Society Interface, 2010, 7, 1311-1318.	3.4	23
23	Persistence of black-tailed prairie-dog populations affected by plague in northern Colorado, USA. Ecology, 2013, 94, 1572-1583.	3.2	23
24	Behavioral state resource selection in invasive wild pigs in the Southeastern United States. Scientific Reports, 2021, 11, 6924.	3.3	23
25	Density-Dependent Competitive Suppression of Sylvatic Dengue Virus by Endemic Dengue Virus in Cultured Mosquito Cells. Vector-Borne and Zoonotic Diseases, 2008, 8, 821-828.	1.5	21
26	Fitting outbreak models to data from many small norovirus outbreaks. Epidemics, 2014, 6, 18-29.	3.0	21
27	Effects of social structure and management on risk of disease establishment in wild pigs. Journal of Animal Ecology, 2021, 90, 820-833.	2.8	21
28	Costs and effectiveness of damage management of an overabundant species (Sus scrofa) using aerial gunning. Wildlife Research, 2018, 45, 696.	1.4	20
29	Using quantitative disease dynamics as a tool for guiding response to avian influenza in poultry in the United States of America. Preventive Veterinary Medicine, 2014, 113, 376-397.	1.9	19
30	Evaluating wildlife-cattle contact rates to improve the understanding of dynamics of bovine tuberculosis transmission in Michigan, USA. Preventive Veterinary Medicine, 2016, 135, 28-36.	1.9	19
31	Not all surveillance data are created equal—A multiâ€method dynamic occupancy approach to determine rabies elimination from wildlife. Journal of Applied Ecology, 2019, 56, 2551-2561.	4.0	19
32	Utility of mosquito surveillance data for spatial prioritization of vector control against dengue viruses in three Brazilian cities. Parasites and Vectors, 2015, 8, 98.	2.5	18
33	Estimating population density for disease risk assessment: The importance of understanding the area of influence of traps using wild pigs as an example. Preventive Veterinary Medicine, 2017, 141, 33-37.	1.9	18
34	Accounting for heterogeneous invasion rates reveals management impacts on the spatial expansion of an invasive species. Ecosphere, 2019, 10, e02657.	2.2	18
35	Defining an epidemiological landscape that connects movement ecology to pathogen transmission and paceâ€ofâ€life. Ecology Letters, 2022, 25, 1760-1782.	6.4	18
36	BOARD INVITED REVIEW: Prospects for improving management of animal disease introductions using disease-dynamic models. Journal of Animal Science, 2019, 97, 2291-2307.	0.5	17

#	Article	IF	CITATIONS
37	Predicting spatial spread of rabies in skunk populations using surveillance data reported by the public. PLoS Neglected Tropical Diseases, 2017, 11, e0005822.	3.0	17
38	Transmission of antibiotic resistance at the wildlife-livestock interface. Communications Biology, 2022, 5, .	4.4	17
39	Deer response to exclusion from stored cattle feed in Michigan, USA. Preventive Veterinary Medicine, 2015, 121, 159-164.	1.9	16
40	Disease-emergence dynamics and control in a socially-structured wildlife species. Scientific Reports, 2016, 6, 25150.	3.3	16
41	A model for leveraging animal movement to understand spatioâ€ŧemporal disease dynamics. Ecology Letters, 2022, 25, 1290-1304.	6.4	16
42	Rabies Surveillance Identifies Potential Risk Corridors and Enables Management Evaluation. Viruses, 2019, 11, 1006.	3.3	15
43	Exposure of a population of invasive wild pigs to simulated toxic bait containing biomarker: implications for population reduction. Pest Management Science, 2019, 75, 1140-1149.	3.4	15
44	Quantifying site-level usage and certainty of absence for an invasive species through occupancy analysis of camera-trap data. Biological Invasions, 2018, 20, 877-890.	2.4	14
45	Predicting functional responses in agroâ€ecosystems from animal movement data to improve management of invasive pests. Ecological Applications, 2020, 30, e02015.	3.8	14
46	Optimal spatial prioritization of control resources for elimination of invasive species under demographic uncertainty. Ecological Applications, 2020, 30, e02126.	3.8	14
47	Social structure defines spatial transmission of African swine fever in wild boar. Journal of the Royal Society Interface, 2021, 18, 20200761.	3.4	14
48	Molecular Cloning of Horse Hsp90 cDNA and Its Comparative Analysis with Other Vertebrate Hsp90 Sequences Journal of Veterinary Medical Science, 2001, 63, 115-124.	0.9	13
49	Efficiency of different spatial and temporal strategies for reducing vertebrate pest populations. Ecological Modelling, 2017, 365, 106-118.	2.5	13
50	Spatial variation in direct and indirect contact rates at the wildlife-livestock interface for informing disease management. Preventive Veterinary Medicine, 2021, 194, 105423.	1.9	13
51	Comment on: †Blood does not buy goodwill: allowing culling increases poaching of a large carnivore'. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20161459.	2.6	12
52	The persistence of multiple strains of avian influenza in live bird markets. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170715.	2.6	11
53	Improving risk assessment of the emergence of novel influenza A viruses by incorporating environmental surveillance. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180346.	4.0	11
54	A comparison of cost and quality of three methods for estimating density for wild pig (Sus scrofa). Scientific Reports, 2020, 10, 2047.	3.3	11

#	Article	IF	Citations
55	Epidemic growth rates and host movement patterns shape management performance for pathogen spillover at the wildlife–livestock interface. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180343.	4.0	10
56	Embracing Dynamic Models for Gene Drive Management. Trends in Biotechnology, 2021, 39, 211-214.	9.3	10
57	Anticipating the Prevalence of Avian Influenza Subtypes H9 and H5 in Live-Bird Markets. PLoS ONE, 2013, 8, e56157.	2.5	10
58	Influence of biotic and abiotic factors on home range size and shape of invasive wild pigs (<i>Sus) Tj ETQq0 0 0</i>) rgBT/Ove	rlock 10 Tf 50
59	Accounting for animal movement improves vaccination strategies against wildlife disease in heterogeneous landscapes. Ecological Applications, 2022, 32, e2568.	3.8	10
60	Multiâ€level movement response of invasive wild pigs (<scp><i>Sus scrofa</i></scp>) to removal. Pest Management Science, 2021, 77, 85-95.	3.4	9
61	Strategic testing approaches for targeted disease monitoring can be used to inform pandemic decision-making. PLoS Biology, 2021, 19, e3001307.	5 . 6	9
62	Individual-Level Antibody Dynamics Reveal Potential Drivers of Influenza A Seasonality in Wild Pig Populations. Integrative and Comparative Biology, 2019, 59, 1231-1242.	2.0	8
63	Factors Affecting Bait Site Visitation: Area of Influence of Baits. Wildlife Society Bulletin, 2020, 44, 362-371.	1.6	8
64	A framework for surveillance of emerging pathogens at the human-animal interface: Pigs and coronaviruses as a case study. Preventive Veterinary Medicine, 2021, 188, 105281.	1.9	8
65	Linking mosquito surveillance to dengue fever through Bayesian mechanistic modeling. PLoS Neglected Tropical Diseases, 2020, 14, e0008868.	3.0	8
66	An efficient method of evaluating multiple concurrent management actions on invasive populations. Ecological Applications, 2022, 32, e2623.	3.8	8
67	Optimal bait density for delivery of acute toxicants to vertebrate pests. Journal of Pest Science, 2020, 93, 723-735.	3.7	7
68	Inferring seasonal infection risk at population and regional scales from serology samples. Ecology, 2020, 101, e02882.	3. 2	6
69	A Rapid Population Assessment Method for Wild Pigs Using Baited Cameras at 3 Study Sites. Wildlife Society Bulletin, 2020, 44, 372-382.	1.6	6
70	Adaptive riskâ€based targeted surveillance for foreign animal diseases at the wildlifeâ€livestock interface. Transboundary and Emerging Diseases, 2022, 69, .	3.0	6
71	How do genetic relatedness and spatial proximity shape African swine fever infections in wild boar?. Transboundary and Emerging Diseases, 2021, , .	3.0	5
72	Optimizing management of invasions in an uncertain world using dynamic spatial models. Ecological Applications, 2022, 32, e2628.	3.8	5

#	Article	IF	CITATIONS
73	Quantifying Transmission Between Wild and Domestic Populations. Wildlife Research Monographs, 2021, , 369-409.	0.9	1