Yongxian Qian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7148546/publications.pdf

Version: 2024-02-01

623734 713466 21 656 14 21 citations g-index h-index papers 23 23 23 866 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Quantitative Sodium (23Na) MRI in Pediatric Gliomas: Initial Experience. Diagnostics, 2022, 12, 1223.	2.6	2
2	Visualizing preâ€osteoarthritis: Integrating MRI UTEâ€T2* with mechanics and biology to combat osteoarthritisâ€"The 2019 Elizabeth Winston Lanier Kappa Delta Award. Journal of Orthopaedic Research, 2021, 39, 1585-1595.	2.3	10
3	[18F]ML-10 PET: Initial Experience in Glioblastoma Multiforme Therapy Response Assessment. Tomography, 2016, 2, 317-324.	1.8	7
4	Short‶ ₂ imaging for quantifying concentration of sodium (²³ Na) of biâ€exponential T ₂ relaxation. Magnetic Resonance in Medicine, 2015, 74, 162-174.	3.0	16
5	Quantitative Magnetic Resonance Imaging UTE-T2 [*] Mapping of Cartilage and Meniscus Healing After Anatomic Anterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine, 2014, 42, 1847-1856.	4.2	131
6	Challenges and Approaches to Quantitative Therapy Response Assessment in Glioblastoma Multiforme Using the Novel Apoptosis Positron Emission Tomography Tracer F-18 ML-10. Translational Oncology, 2014, 7, 111-119.	3.7	18
7	Superparamagnetic Iron Oxide is Suitable to Label Tendon Stem Cells and Track Them In Vivo with MR Imaging. Annals of Biomedical Engineering, 2013, 41, 2109-2119.	2.5	26
8	Repeatability of ultrashort echo timeâ€based twoâ€component <i>T</i> ₂ [*] measurements on cartilages in human knee at 3 T. Magnetic Resonance in Medicine, 2013, 69, 1564-1571.	3.0	14
9	Highâ€resolution sodium imaging of human brain at 7 T. Magnetic Resonance in Medicine, 2012, 68, 227-233.	3.0	42
10	Sodium imaging of human brain at 7 T with 15â€channel array coil. Magnetic Resonance in Medicine, 2012, 68, 1807-1814.	3.0	36
11	Sodium MRI and the Assessment of Irreversible Tissue Damage During Hyper-Acute Stroke. Translational Stroke Research, 2012, 3, 236-245.	4.2	34
12	Highâ€resolution ultrashort echo time (UTE) imaging on human knee with AWSOS sequence at 3.0 T. Journal of Magnetic Resonance Imaging, 2012, 35, 204-210.	3.4	27
13	High-resolution spiral imaging on a whole-body 7T scanner with minimized image blurring. Magnetic Resonance in Medicine, 2010, 63, 543-552.	3.0	23
14	Multicomponent <i>T</i> ₂ * mapping of knee cartilage: Technical feasibility ex vivo. Magnetic Resonance in Medicine, 2010, 64, 1426-1431.	3.0	77
15	Parallel imaging with 3D TPI trajectory: SNR and acceleration benefits. Magnetic Resonance Imaging, 2009, 27, 656-663.	1.8	15
16	Acquisitionâ€weighted stack of spirals for fast highâ€resolution threeâ€dimensional ultraâ€short echo time MR imaging. Magnetic Resonance in Medicine, 2008, 60, 135-145.	3.0	104
17	Decomposed direct matrix inversion for fast non-cartesian SENSE reconstructions. Magnetic Resonance in Medicine, 2006, 56, 356-363.	3.0	9
18	Self-calibrated spiral SENSE. Magnetic Resonance in Medicine, 2004, 52, 688-692.	3.0	32

#	Article	IF	CITATIONS
19	Direct reconstruction of MR images from data acquired on a non-Cartesian grid using an equal-phase-line algorithm. Magnetic Resonance in Medicine, 2002, 47, 1228-1233.	3.0	6
20	Reconstruction of MR images from data acquired on an arbitraryk-space trajectory using the same-image weight. Magnetic Resonance in Medicine, 2002, 48, 306-311.	3.0	9
21	A novel method for beat-to-beat detection of ventricular late potentials. IEEE Transactions on Biomedical Engineering, 2001, 48, 931-935.	4.2	18