List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7148106/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temporal and spatial variabilities of atmospheric polychlorinated biphenyls (PCBs), organochlorine (OC) pesticides and polycyclic aromatic hydrocarbons (PAHs) in the Canadian Arctic: Results from a decade of monitoring. Science of the Total Environment, 2005, 342, 119-144.	8.0	259
2	Prediction of solid/liquid distribution coefficients of radiocaesium in soils and sediments. Part one: a simplified procedure for the solid phase characterisation. Applied Geochemistry, 1996, 11, 589-594.	3.0	172
3	Thirty years after the Chernobyl accident: What lessons have we learnt?. Journal of Environmental Radioactivity, 2016, 157, 77-89.	1.7	151
4	Mercury in the Arctic atmosphere: An analysis of eight years of measurements of GEM at Alert (Canada) and a comparison with observations at Amderma (Russia) and Kuujjuarapik (Canada). Science of the Total Environment, 2005, 342, 185-198.	8.0	123
5	Spatial and Seasonal Variations of Hexachlorocyclohexanes (HCHs) and Hexachlorobenzene (HCB) in the Arctic Atmosphere. Environmental Science & Technology, 2006, 40, 6601-6607.	10.0	94
6	Behaviour of long-lived Chernobyl radionuclides in a soil–water system. Analyst, The, 1992, 117, 1041-1047.	3.5	88
7	Behavior of accidentally released radiocesium in soil–water environment: Looking at Fukushima from a Chernobyl perspective. Journal of Environmental Radioactivity, 2016, 151, 568-578.	1.7	87
8	Strong contrast of cesium radioactivity between marine and freshwater fish in Fukushima. Journal of Environmental Radioactivity, 2019, 204, 132-142.	1.7	71
9	Influence of agricultural countermeasures on the ratio of different chemical forms of radionuclides in soil and soil solution. Science of the Total Environment, 1993, 137, 147-162.	8.0	70
10	A circumpolar perspective of atmospheric organochlorine pesticides (OCPs): Results from six Arctic monitoring stations in 2000–2003. Atmospheric Environment, 2008, 42, 4682-4698.	4.1	69
11	Migration and bioavailability of 137Cs in forest soil of southern Germany. Journal of Environmental Radioactivity, 2009, 100, 315-321.	1.7	61
12	Application of fertilisers and ameliorants to reduce soil to plant transfer of radiocaesium and radiostrontium in the medium to long term — a summary. Science of the Total Environment, 1993, 137, 173-182.	8.0	52
13	THE ???AQUASCOPE??? SIMPLIFIED MODEL FOR PREDICTING 89,90Sr, 131I, and 134,137Cs IN SURFACE WATERS AFTER A LARGE-SCALE RADIOACTIVE FALLOUT. Health Physics, 2005, 89, 628-644.	0.5	51
14	Measuring the specific caesium sorption capacity of soils, sediments and clay minerals. Applied Geochemistry, 2007, 22, 219-229.	3.0	50
15	Radiocesium distribution and fluxes in the typical Cryptomeria japonica forest at the late stage after the accident at Fukushima Dai-Ichi Nuclear Power Plant. Journal of Environmental Radioactivity, 2017, 166, 45-55.	1.7	50
16	Watershed wash-off of atmospherically deposited radionuclides: a review of normalized entrainment coefficients. Journal of Environmental Radioactivity, 2009, 100, 774-778.	1.7	44
17	Radionuclide migration in forest ecosystems – results of a model validation study. Journal of Environmental Radioactivity, 2005, 84, 285-296.	1.7	35
18	Comparative study of 137Cs partitioning between solid and liquid phases in Lakes Constance, Lugano and Vorsee. Journal of Environmental Radioactivity, 2002, 58, 1-11.	1.7	34

#	Article	IF	CITATIONS
19	Behavior of 137Cs in ponds in the vicinity of the Fukushima Dai-ichi nuclear power plant. Journal of Environmental Radioactivity, 2017, 178-179, 367-376.	1.7	33
20	Natural attenuation of Fukushima-derived radiocesium in soils due to its vertical and lateral migration. Journal of Environmental Radioactivity, 2018, 186, 23-33.	1.7	31
21	Vertical distribution of radiocesium in soils of the area affected by the Fukushima Dai-ichi nuclear power plant accident. Eurasian Soil Science, 2016, 49, 570-580.	1.6	30
22	Radioactive and stable cesium isotope distributions and dynamics in Japanese cedar forests. Journal of Environmental Radioactivity, 2018, 186, 34-44.	1.7	30
23	A comparative study of radiocesium mobility measurements in soils and sediments from the catchment of a small upland oligotrophic lake (Devoke Water, U.K.)11n memoriam: This paper is dedicated to the memory of Dr. Vladimir Borzilov. A good friend and an enthusiastic initiator of our joint research.1. Water Research, 1998, 32, 2846-2855.	11.3	27
24	Modelling the long-term dynamics of radiocaesium in closed lakes. Journal of Environmental Radioactivity, 2002, 61, 41-53.	1.7	27
25	Radiocesium distribution and mid-term dynamics in the ponds of the Fukushima Dai-ichi nuclear power plant exclusion zone in 2015–2019. Chemosphere, 2021, 265, 129058.	8.2	25
26	Long-Term Investigation of 137Cs Fixation by Soils. Radiation Protection Dosimetry, 1996, 64, 15-18.	0.8	22
27	Application of bomb- and Chernobyl-derived radiocaesium for reconstructing changes in erosion rates and sediment fluxes from croplands in areas of European Russia with different levels of Chernobyl fallout. Journal of Environmental Radioactivity, 2018, 186, 78-89.	1.7	20
28	Mid- to long-term radiocesium wash-off from contaminated catchments at Chernobyl and Fukushima. Water Research, 2021, 188, 116514.	11.3	20
29	Phytoremediation of Chernobyl Contaminated Land. Radiation Protection Dosimetry, 2000, 92, 59-64.	0.8	18
30	Fuel particles in the Chernobyl cooling pond: current state and prediction for remediation options. Journal of Environmental Radioactivity, 2009, 100, 329-332.	1.7	18
31	Radiocesium in Ponds in the Near Zone of Fukushima Dai-ichi NPP. Water Resources, 2018, 45, 589-597.	0.9	18
32	Model Testing Using Chernobyl Data. Health Physics, 1996, 70, 8-12.	0.5	17
33	Distribution of radiocesium of accidental origin between the suspended alluvium and solution in rivers: Comparison of Fukushima and Chernobyl. Radiochemistry, 2015, 57, 552-556.	0.7	16
34	Impact of wildfire on 137Cs and 90Sr wash-off in heavily contaminated forests in the Chernobyl exclusion zone. Environmental Pollution, 2020, 259, 113764.	7.5	16
35	Kinetics of the leaching of90Sr from fuel particles in soil in the near zone of the chernobyl nuclear power plant. Atomic Energy, 1999, 86, 136-141.	0.4	15
36	90Sr and137Cs exchange distribution coefficient in soil-water systems. Atomic Energy, 2000, 88, 158-163.	0.4	14

#	Article	IF	CITATIONS
37	Fate and transport of radiocesium, radiostrontium and radiocobalt on urban building materials. Journal of Environmental Radioactivity, 2013, 125, 74-80.	1.7	14
38	Comparative analysis of radioactive cesium wash-off from contaminated catchment areas after accidents at the Fukushima Dai-ichi and Chernobyl nuclear power plants. Geochemistry International, 2016, 54, 522-528.	0.7	14
39	Influence of fertilizing on the 137Cs soil–plant transfer in a spruce forest of Southern Germany. Journal of Environmental Radioactivity, 2009, 100, 489-496.	1.7	13
40	Using reservoir sediment deposits to determine the longer-term fate of chernobyl-derived 137Cs fallout in the fluvial system. Environmental Pollution, 2021, 274, 116588.	7.5	13
41	Effects of model complexity on uncertainty estimates. Journal of Environmental Radioactivity, 1999, 42, 255-270.	1.7	11
42	Transformation of the forms of90Sr and137Cs in soil and bottom deposits. Atomic Energy, 2000, 88, 56-60.	0.4	11
43	Combining data sets of organochlorines (OCs) in human plasma for the Russian Arctic. Science of the Total Environment, 2009, 407, 5216-5222.	8.0	11
44	Importance of desorption process from Abukuma River's suspended particles in increasing dissolved 137Cs in coastal water during river-flood caused by typhoons. Chemosphere, 2021, 281, 130751.	8.2	11
45	Quantitative assessment of radiocaesium bioavailability in forest soils. Radiochimica Acta, 2000, 88, 789-792.	1.2	10
46	Erosion as a Factor of Transformation of Soil Radioactive Contamination in the Basin of the Shchekino Reservoir (Tula Region). Eurasian Soil Science, 2021, 54, 291-303.	1.6	9
47	Behavior of Radionuclides in the Environment II. , 2020, , .		9
48	Validation of models of radionuclide wash-off from contaminated watersheds using Chernobyl data. Journal of Environmental Radioactivity, 1999, 42, 131-141.	1.7	8
49	Thirty years after the Chernobyl accident – 30 key papers published in the Journal of Environmental Radioactivity. Journal of Environmental Radioactivity, 2016, 157, 38-40.	1.7	8
50	Modeling the Washoff of 90Sr and 137Cs from an Experimental Plot Established in the Vicinity of the Chernobyl Reactor. Health Physics, 1996, 71, 896-909.	0.5	7
51	Indications of decreasing human PTS concentrations in North West Russia. Global Health Action, 2011, 4, 8427.	1.9	7
52	Temporal trends of ¹³⁷ Cs activity concentration in pond waters in the vicinity of Fukushima Dai-ichi nuclear power plant. Proceedings of the International Association of Hydrological Sciences, 0, 381, 101-106.	1.0	7
53	Mobility and Bioavailability of the Chernobyl-Derived Radionuclides in Soil–Water Environment: Review. , 2020, , 157-193.		7
54	Diffusional Modelling of Radiocaesium Fixation by Soils. Radiation Protection Dosimetry, 1996, 64, 11-13.	0.8	6

#	Article	IF	CITATIONS
55	Long-term kinetics of radiocesium fixation by soils. Studies in Environmental Science, 1997, , 173-182.	0.0	6
56	Analysis of the data of long-term monitoring of atmospheric mercury content and meteorological parameters at Amderma polar station. Russian Meteorology and Hydrology, 2013, 38, 405-413.	1.3	6
57	Assessment of gamma radiation from a limited area of forest floor using a cumulative personal dosimeter. Journal of Environmental Radioactivity, 2019, 204, 95-103.	1.7	6
58	Fate and transport of radiocesium in urban building materials. Radioprotection, 2011, 46, S265-S269.	1.0	6
59	Factors Controlling the Dissolved ¹³⁷ Cs Seasonal Fluctuations in the Abukuma River Under the Influence of the Fukushima Nuclear Power Plant Accident. Journal of Geophysical Research G: Biogeosciences, 2022, 127, e2021JG006591.	3.0	6
60	Monitoring of persistent organic pollutants in the ambient air as an element of implementation of the Stockholm Convention on persistent organic pollutants. Russian Journal of Physical Chemistry B, 2012, 6, 652-658.	1.3	5
61	A comparative study of riverine 137Cs dynamics during high-flow events at three contaminated river catchments in Fukushima. Science of the Total Environment, 2022, 821, 153408.	8.0	5
62	Migration of 90Sr in the solid phase of the soil-soil solution-plant systems and ways to reduce it. Radiochemistry, 2014, 56, 222-225.	0.7	4
63	Simulating dissolved 90Sr concentrations within a small catchment in the Chernobyl Exclusion Zone using a parametric hydrochemical model. Scientific Reports, 2020, 10, 9818.	3.3	4
64	Modelling Radiocaesium Bioavailability in Forest Soils. , 1999, , 217-229.		4
65	Reconstruction of long-term dynamics of Chernobyl-derived ¹³⁷ Cs in the Upa River using bottom sediments in the Scheckino reservoir and semi-empirical modelling. Proceedings of the International Association of Hydrological Sciences, 0, 381, 95-99.	1.0	4
66	Long-Term Dynamics of the Chernobyl-Derived Radionuclides in Rivers and Lakes. , 2020, , 323-348.		4
67	Reconstruction of time changes in radiocesium concentrations in the river of the Fukushima Dai-ichi NPP contaminated area based on its depth distribution in dam reservoir's bottom sediments. Environmental Research, 2021, 206, 112307.	7.5	2
68	Distribution and Dynamics of Radionuclides in the Chernobyl Cooling Pond. , 2020, , 349-405.		2
69	Erosion and Redeposition of Sediments and Sediment-Associated Radiocesium on River Floodplains (the Niida River Basin and the Abukuma River as an Example). , 2022, , 97-133.		2
70	Development of amendments for rehabilitation of soils, contaminated by radionuclides, and assessment of their application efficacy. Radioprotection, 2009, 44, 135-139.	1.0	1
71	Implementation of Hydrological Dispersion Module of JRODOS for the assessment of137Cs transport and fate in rivers, reservoirs and ponds of the Fukushima Prefecture. Radioprotection, 2016, 51, S145-S148.	1.0	1
72	Semi-Empirical Diffusional Model of Radionuclide Wash-Off from Contaminated Watersheds and Its Testing Using Monitoring Data for Fukushima and Chernobyl Rivers. Geochemistry International, 2021, 59, 607-617.	0.7	1

#	Article	IF	CITATIONS
73	The Influence of Hot Particle Contamination on Models for Radiation Exposures Via the Aquatic Pathway. NATO Science for Peace and Security Series C: Environmental Security, 2009, , 249-258.	0.2	1
74	Title is missing!. Atomic Energy, 2002, 93, 689-691.	0.4	0
75	Consequences of the river valley bottom transformation after extreme flood (on the example of the) Tj ETQq1 1 C	0.784314 r 0.3	g&T /Overloo
76	Transformation of Radiocesium Speciation in Ponds at the Vicinity of Fukushima Dai-ichi Nuclear Power Plant and Dynamics of Its Distribution in Sediment–Water System. Russian Meteorology and Hydrology, 2021, 46, 312-318.	1.3	0
77	Time changes of dose equivalent rate above the soil surface as indication of natural attenuation processes. Proceedings of the International Association of Hydrological Sciences, 0, 381, 121-126.	1.0	0
78	Reconstruction of the Long-Term Dynamics of Particulate Concentrations and Solid–Liquid Distribution of Radiocesium in Three Severely Contaminated Water Bodies of the Chernobyl Exclusion Zone Based on Current Depth Distribution in Bottom Sediments. Land, 2022, 11, 29.	2.9	0
79	A Model for Prediction and Assessment of Surface Water Contamination in Emergency Situations and Methodology of Determining its Parameters. Radiation Protection Dosimetry, 1993, 50, 349-351.	0.8	0