
Daniel Bellet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7147390/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology, 2013, 24, 452001.	2.6	613
2	Metallic Nanowireâ€Based Transparent Electrodes for Next Generation Flexible Devices: a Review. Small, 2016, 12, 6052-6075.	10.0	478
3	Transparent Heaters: A Review. Advanced Functional Materials, 2020, 30, 1910225.	14.9	156
4	Relationship between Material Properties and Transparent Heater Performance for Both Bulk-like and Percolative Nanostructured Networks. ACS Nano, 2014, 8, 4805-4814.	14.6	132
5	Stability Enhancement of Silver Nanowire Networks with Conformal ZnO Coatings Deposited by Atmospheric Pressure Spatial Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2018, 10, 19208-19217.	8.0	97
6	Electrical Mapping of Silver Nanowire Networks: A Versatile Tool for Imaging Network Homogeneity and Degradation Dynamics during Failure. ACS Nano, 2018, 12, 4648-4659.	14.6	78
7	Spatial Atomic Layer Deposition (SALD), an emerging tool for energy materials. Application to new-generation photovoltaic devices and transparent conductive materials. Comptes Rendus Physique, 2017, 18, 391-400.	0.9	71
8	Oxidation of copper nanowire based transparent electrodes in ambient conditions and their stabilization by encapsulation: application to transparent film heaters. Nanotechnology, 2018, 29, 085701.	2.6	68
9	Transparent Electrodes Based on Silver Nanowire Networks: From Physical Considerations towards Device Integration. Materials, 2017, 10, 570.	2.9	59
10	In situ microtomography investigation of metal powder compacts during sintering. Nuclear Instruments & Methods in Physics Research B, 2003, 200, 287-294.	1.4	58
11	High Performance ZnO-SnO ₂ :F Nanocomposite Transparent Electrodes for Energy Applications. ACS Applied Materials & Interfaces, 2014, 6, 14096-14107.	8.0	57
12	Deposition of ZnO based thin films by atmospheric pressure spatial atomic layer deposition for application in solar cells. Journal of Renewable and Sustainable Energy, 2017, 9, .	2.0	51
13	Low-cost fabrication of flexible transparent electrodes based on Al doped ZnO and silver nanowire nanocomposites: impact of the network density. Nanoscale, 2019, 11, 12097-12107.	5.6	51
14	Advances in Flexible Metallic Transparent Electrodes. Small, 2022, 18, e2106006.	10.0	49
15	Direct Imaging of the Onset of Electrical Conduction in Silver Nanowire Networks by Infrared Thermography: Evidence of Geometrical Quantized Percolation. Nano Letters, 2016, 16, 7046-7053.	9.1	44
16	Electron tunneling through grain boundaries in transparent conductive oxides and implications for electrical conductivity: the case of ZnO:Al thin films. Materials Horizons, 2018, 5, 715-726.	12.2	43
17	Open-air printing of Cu2O thin films with high hole mobility for semitransparent solar harvesters. Communications Materials, 2021, 2, .	6.9	39
18	Versatility of bilayer metal oxide coatings on silver nanowire networks for enhanced stability with minimal transparency loss. Nanoscale, 2019, 11, 19969-19979.	5.6	35

DANIEL BELLET

#	Article	IF	CITATIONS
19	Impact of precursor exposure on process efficiency and film properties in spatial atomic layer deposition. Chemical Engineering Journal, 2021, 403, 126234.	12.7	31
20	Percolation in networks of 1-dimensional objects: comparison between Monte Carlo simulations and experimental observations. Nanoscale Horizons, 2018, 3, 545-550.	8.0	28
21	Increasing the Electron Mobility of ZnO-Based Transparent Conductive Films Deposited by Open-Air Methods for Enhanced Sensing Performance. ACS Applied Nano Materials, 2018, 1, 6922-6931.	5.0	27
22	SnO2 Films Deposited by Ultrasonic Spray Pyrolysis: Influence of Al Incorporation on the Properties. Molecules, 2019, 24, 2797.	3.8	25
23	Influence of the Geometric Parameters on the Deposition Mode in Spatial Atomic Layer Deposition: A Novel Approach to Area-Selective Deposition. Coatings, 2019, 9, 5.	2.6	25
24	Transparent and Mechanically Resistant Silver-Nanowire-Based Low-Emissivity Coatings. ACS Applied Materials & Interfaces, 2021, 13, 21971-21978.	8.0	24
25	Rapid synthesis of ultra-long silver nanowires for high performance transparent electrodes. Nanoscale Advances, 2020, 2, 3804-3808.	4.6	19
26	Planar and Transparent Memristive Devices Based on Titanium Oxide Coated Silver Nanowire Networks with Tunable Switching Voltage. Small, 2021, 17, e2007344.	10.0	17
27	Tuning the properties of F:SnO ₂ (FTO) nanocomposites with S:TiO ₂ nanoparticles – promising hazy transparent electrodes for photovoltaics applications. Journal of Materials Chemistry C, 2017, 5, 91-102.	5.5	15
28	High quality epitaxial fluorine-doped SnO2 films by ultrasonic spray pyrolysis: Structural and physical property investigation. Materials and Design, 2017, 132, 518-525.	7.0	15
29	Dynamic degradation of metallic nanowire networks under electrical stress: a comparison between experiments and simulations. Nanoscale Advances, 2021, 3, 675-681.	4.6	13
30	Open-air, low-temperature deposition of phase pure Cu ₂ 0 thin films as efficient hole-transporting layers for silicon heterojunction solar cells. Journal of Materials Chemistry A, 2021, 9, 15968-15974.	10.3	12
31	Effects of non-homogeneity and oxide coating on silver nanowire networks under electrical stress: comparison between experiment and modeling. Nanotechnology, 2021, 32, 445702.	2.6	12
32	Silver Nanowire Networks: Ways to Enhance Their Physical Properties and Stability. Nanomaterials, 2021, 11, 2785.	4.1	12
33	Spatial Atomic Layer Deposition. , 0, , .		10
34	Unveiling Key Limitations of ZnO/Cu ₂ O All-Oxide Solar Cells through Numerical Simulations. ACS Applied Energy Materials, 2022, 5, 5423-5433.	5.1	10
35	Polymorphism of the Blocking TiO2 Layer Deposited on F:SnO2 and Its Influence on the Interfacial Energetic Alignment. Journal of Physical Chemistry C, 2017, 121, 17305-17313.	3.1	9
36	Electrical Properties of Low-Temperature Processed Sn-Doped In2O3 Thin Films: The Role of Microstructure and Oxygen Content and the Potential of Defect Modulation Doping. Materials, 2019, 12, 2232.	2.9	8

DANIEL BELLET

#	Article	IF	CITATIONS
37	Time of Failure of Metallic Nanowire Networks under Coupled Electrical and Thermal Stress: Implications for Transparent Electrodes Lifetime. ACS Applied Nano Materials, 2022, 5, 2102-2112.	5.0	8
38	Hazy Al2O3-FTO Nanocomposites: A Comparative Study with FTO-Based Nanocomposites Integrating ZnO and S:TiO2 Nanostructures. Nanomaterials, 2018, 8, 440.	4.1	3
39	Metallic Nanowire Percolating Network: From Main Properties to Applications. , 0, , .		1