Ann Melissa Campbell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7146568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Routing for Relief Efforts. Transportation Science, 2008, 42, 127-145.	4.4	334
2	A Decomposition Approach for the Inventory-Routing Problem. Transportation Science, 2004, 38, 488-502.	4.4	243
3	Efficient Insertion Heuristics for Vehicle Routing and Scheduling Problems. Transportation Science, 2004, 38, 369-378.	4.4	196
4	Prepositioning supplies in preparation for disasters. European Journal of Operational Research, 2011, 209, 156-165.	5.7	179
5	Time Slot Management in Attended Home Delivery. Transportation Science, 2011, 45, 435-449.	4.4	167
6	The Same-Day Delivery Problem for Online Purchases. Transportation Science, 2019, 53, 167-184.	4.4	148
7	Decision Support for Consumer Direct Grocery Initiatives. Transportation Science, 2005, 39, 313-327.	4.4	144
8	The Inventory Routing Problem. , 1998, , 95-113.		135
9	Incentive Schemes for Attended Home Delivery Services. Transportation Science, 2006, 40, 327-341.	4.4	123
10	Forty years of periodic vehicle routing. Networks, 2014, 63, 2-15.	2.7	118
11	Customer acceptance mechanisms for home deliveries in metropolitan areas. European Journal of Operational Research, 2014, 233, 193-207.	5.7	104
12	Vehicle routing to minimize time-dependent emissions in urban areas. European Journal of Operational Research, 2016, 251, 478-494.	5.7	104
13	The Restaurant Meal Delivery Problem: Dynamic Pickup and Delivery with Deadlines and Random Ready Times. Transportation Science, 2021, 55, 75-100.	4.4	91
14	The orienteering problem with stochastic travel and service times. Annals of Operations Research, 2011, 186, 61-81.	4.1	90
15	Ensuring service levels in routing problems with time windows and stochastic travel times. European Journal of Operational Research, 2015, 240, 539-550.	5.7	81
16	The p-hub center allocation problem. European Journal of Operational Research, 2007, 176, 819-835.	5.7	54
17	Data-driven approaches for emissions-minimized paths in urban areas. Computers and Operations Research, 2016, 67, 34-47.	4.0	48
18	The Value of Autonomous Vehicles for Last-Mile Deliveries in Urban Environments. Management Science, 2022, 68, 280-299.	4.1	42

#	Article	IF	CITATIONS
19	Aggregation for the probabilistic traveling salesman problem. Computers and Operations Research, 2006, 33, 2703-2724.	4.0	41
20	Delivery Volume Optimization. Transportation Science, 2004, 38, 210-223.	4.4	39
21	Vehicle minimization for periodic deliveries. European Journal of Operational Research, 2005, 165, 668-684.	5.7	38
22	Assessment of transportation system disruption and accessibility to critical amenities during flooding: Iowa case study. Science of the Total Environment, 2021, 793, 148476.	8.0	37
23	Flexible time window management for attended home deliveries. Omega, 2020, 91, 102023.	5.9	36
24	Runtime reduction techniques for the probabilistic traveling salesman problem with deadlines. Computers and Operations Research, 2009, 36, 1231-1248.	4.0	34
25	Extension of the 2-p-opt and 1-shift algorithms to the heterogeneous probabilistic traveling salesman problem. European Journal of Operational Research, 2007, 176, 131-144.	5.7	32
26	Network design for time onstrained delivery. Naval Research Logistics, 2008, 55, 493-515.	2.2	32
27	Challenges and Opportunities in Attended Home Delivery. Operations Research/ Computer Science Interfaces Series, 2008, , 379-396.	0.3	31
28	Challenges and Advances in A Priori Routing. Operations Research/ Computer Science Interfaces Series, 2008, , 123-142.	0.3	24
29	Multicommodity vs. Single-Commodity Routing. Transportation Science, 2016, 50, 461-472.	4.4	24
30	Upgrading arcs to minimize the maximum travel time in a network. Networks, 2006, 47, 72-80.	2.7	21
31	A twoâ€tier urban delivery network with robotâ€based deliveries. Networks, 2021, 78, 461-483.	2.7	21
32	Liner shipping single service design problem with arrival time service levels. Flexible Services and Manufacturing Journal, 2019, 31, 620-652.	3.4	17
33	EXPERIENCES WITH THE USE OF SUPPLY CHAIN MANAGEMENT SOFTWARE IN EDUCATION. Production and Operations Management, 2000, 9, 66-80.	3.8	14
34	Special Issue on Recent Advances in Urban Transport and Logistics Through Optimization and Analytics. Transportation Science, 2019, 53, 1-5.	4.4	12
35	Minimax flow tree problems. Networks, 2009, 54, 117-129.	2.7	11
36	Data-driven planning of reliable itineraries in multi-modal transit networks. Public Transport, 2020, 12, 171-205.	2.7	11

ANN MELISSA CAMPBELL

#	Article	IF	CITATIONS
37	Impact of Autonomous Vehicle Assisted Last-Mile Delivery in Urban to Rural Settings. Transportation Science, 2022, 56, 1530-1548.	4.4	10
38	Shortest path problem with arc failure scenarios. EURO Journal on Transportation and Logistics, 2017, 6, 139-163.	2.2	7
39	Strategic placement of telemetry to reduce routing costs. Networks, 2014, 63, 260-275.	2.7	5
40	Robot-Based Last-Mile Deliveries With Pedestrian Zones. Frontiers in Future Transportation, 2022, 2, .	1.8	5
41	Fuel distribution planning for disasters: Models and case study for Puerto Rico. Transportation Research, Part E: Logistics and Transportation Review, 2021, 152, 102403.	7.4	4
42	The Vehicle Routing Problem with Demand Range. Annals of Operations Research, 2006, 144, 99-110.	4.1	3
43	Solving vehicle routing problems with stochastic and correlated travel times and makespan objectives. EURO Journal on Transportation and Logistics, 2021, 10, 100029.	2.2	3
44	Strategic placement of telemetry units considering customer usage correlation. EURO Journal on Transportation and Logistics, 2019, 8, 35-64.	2.2	2
45	Reliability in public transit networks considering backup itineraries. European Journal of Operational Research, 2022, 300, 852-864.	5.7	2
46	The two-echelon island fuel distribution problem. European Journal of Operational Research, 2022, 302, 999-1017.	5.7	0