
Krzysztof Szczepanowicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7146521/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metallic core-shell nanoparticles for conductive coatings and printing. Advances in Colloid and Interface Science, 2022, 299, 102578.	14.7	25
2	Effect of Oxalic Acid Treatment on Conductive Coatings Formed by Ni@Ag Core–Shell Nanoparticles. Materials, 2022, 15, 305.	2.9	2
3	Fluorophore Localization Determines the Results of Biodistribution of Core-Shell Nanocarriers. International Journal of Nanomedicine, 2022, Volume 17, 577-588.	6.7	0
4	The role of water in the confinement of ibuprofen in SBA-15. Journal of Materials Chemistry B, 2021, 9, 7482-7491.	5.8	3
5	Nanocomposite Inks Based on Nickel–Silver Core–Shell and Silver Nanoparticles for Fabrication Conductive Coatings at Low-Temperature Sintering. Colloids and Interfaces, 2021, 5, 15.	2.1	7
6	Polydispersity vs. Monodispersity. How the Properties of Ni-Ag Core-Shell Nanoparticles Affect the Conductivity of Ink Coatings. Materials, 2021, 14, 2304.	2.9	7
7	Polyaminoacid Based Core@shell Nanocarriers of 5-Fluorouracil: Synthesis, Properties and Theranostics Application. International Journal of Molecular Sciences, 2021, 22, 12762.	4.1	3
8	Control of Specific/Nonspecific Protein Adsorption: Functionalization of Polyelectrolyte Multilayer Films as a Potential Coating for Biosensors. Materials, 2021, 14, 7629.	2.9	5
9	The conductive properties of ink coating based on Ni–Ag core–shell nanoparticles with the bimodal size distribution. Journal of Materials Science: Materials in Electronics, 2020, 31, 12991-12999.	2.2	8
10	<p>Biomedical Applications of Multifunctional Polymeric Nanocarriers: A Review of Current Literature</p> . International Journal of Nanomedicine, 2020, Volume 15, 8673-8696.	6.7	46
11	Nafion-Based Nanocarriers for Fluorine Magnetic Resonance Imaging. Langmuir, 2020, 36, 9534-9539.	3.5	12
12	Magnetically responsive polycaprolactone nanocarriers for application in the biomedical field: magnetic hyperthermia, magnetic resonance imaging, and magnetic drug delivery. RSC Advances, 2020, 10, 43607-43618.	3.6	14
13	Effective Detection of Nafion®-Based Theranostic Nanocapsules Through 19F Ultra-Short Echo Time MRI. Nanomaterials, 2020, 10, 2127.	4.1	3
14	Rationale design of a layer-by-layer nanostructure for X-ray induced photodynamic therapy. Colloids and Interface Science Communications, 2020, 39, 100327.	4.1	5
15	Polymeric Core-Shell Nanoparticles Prepared by Spontaneous Emulsification Solvent Evaporation and Functionalized by the Layer-by-Layer Method. Nanomaterials, 2020, 10, 496.	4.1	53
16	Encapsulation of clozapine into polycaprolactone nanoparticles as a promising strategy of the novel nanoformulation of the active compound. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	9
17	Gadolinium labeled polyelectrolyte nanocarriers for theranostic application. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110396.	5.0	4
18	Nanocomposite multifunctional polyelectrolyte thin films with copper nanoparticles as the antimicrobial coatings. Colloids and Surfaces B: Biointerfaces, 2019, 181, 112-118.	5.0	26

#	Article	IF	CITATIONS
19	Protective effects of polydatin in free and nanocapsulated form on changes caused by lipopolysaccharide in hippocampal organotypic cultures. Pharmacological Reports, 2019, 71, 603-613.	3.3	14
20	Application of metallic inks based on nickel-silver core–shell nanoparticles for fabrication of conductive films. Nanotechnology, 2019, 30, 225301.	2.6	17
21	<p>In vivo Studies on Pharmacokinetics, Toxicity and Immunogenicity of Polyelectrolyte Nanocapsules Functionalized with Two Different Polymers: Poly-L-Glutamic Acid or PEG</p> . International Journal of Nanomedicine, 2019, Volume 14, 9587-9602.	6.7	28
22	Functionalized structures based on shape-controlled TiO2. Applied Surface Science, 2019, 473, 603-613.	6.1	15
23	The optimization of methods of synthesis of nickel–silver core–shell nanoparticles for conductive materials. Nanotechnology, 2019, 30, 015601.	2.6	12
24	Poly(l-glutamic acid)-g-poly(ethylene glycol) external layer in polyelectrolyte multilayer films: Characterization and resistance to serum protein adsorption. Colloids and Surfaces B: Biointerfaces, 2018, 166, 295-302.	5.0	11
25	In vitro toxicity studies of biodegradable, polyelectrolyte nanocapsules. International Journal of Nanomedicine, 2018, Volume 13, 5159-5172.	6.7	23
26	Encapsulation of camptothecin into pegylated polyelectrolyte nanocarriers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 557, 36-42.	4.7	10
27	Polyelectrolyte-coated nanocapsules containing cyclosporine A protect neuronal-like cells against oxidative stress-induced cell damage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 264-269.	4.7	3
28	Gadolinium alginate nanogels for theranostic applications. Colloids and Surfaces B: Biointerfaces, 2017, 153, 183-189.	5.0	36
29	Polyelectrolyte nanocapsules containing iron oxide nanoparticles as MRI detectable drug delivery system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 351-356.	4.7	20
30	Neuroprotective action of undecylenic acid (UDA) encapsulated into PCL nanocarriers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 41-47.	4.7	6
31	The interaction of clozapine loaded nanocapsules with the hCMEC/D3 cells – In vitro model of blood brain barrier. Colloids and Surfaces B: Biointerfaces, 2017, 159, 200-210.	5.0	17
32	Polysaccharide gel nanoparticles modified by the Layer-by-Layer technique for biomedical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 519, 192-198.	4.7	9
33	Co-adsorption of polyanions and esterquat surfactants; effect on formation and stability of micellar core nanocapsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 519, 117-124.	4.7	7
34	Pegylated polyelectrolyte nanoparticles containing paclitaxel as a promising candidate for drug carriers for passive targeting. Colloids and Surfaces B: Biointerfaces, 2016, 143, 463-471.	5.0	39
35	Nanocapsules with Polyelectrolyte Shell as a Platform for 1,25-dihydroxyvitamin D3 Neuroprotection: Study in Organotypic Hippocampal Slices. Neurotoxicity Research, 2016, 30, 581-592.	2.7	14
36	Liquid-core polyelectrolyte nanocapsules produced by membrane emulsification as carriers for corrosion inhibitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 510, 2-10.	4.7	13

#	Article	IF	CITATIONS
37	Hybrid Polyelectrolyte/Fe ₃ O ₄ Nanocapsules for Hyperthermia Applications. ACS Applied Materials & Interfaces, 2016, 8, 25043-25050.	8.0	40
38	Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity. Nanotechnology, 2016, 27, 355101.	2.6	22
39	Deposition of zeolite nanoparticles onto porous silica monolith. Surface Innovations, 2016, 4, 88-101.	2.3	3
40	Synthesis of polyelectrolyte nanocapsules with iron oxide (Fe 3 O 4) nanoparticles for magnetic targeting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 505, 132-137.	4.7	16
41	Encapsulation of clozapine in polymeric nanocapsules and its biological effects. Colloids and Surfaces B: Biointerfaces, 2016, 140, 342-352.	5.0	32
42	Nanostructured multilayer polyelectrolyte films with silver nanoparticles as antibacterial coatings. Colloids and Surfaces B: Biointerfaces, 2016, 137, 158-166.	5.0	53
43	Theoretical and experimental studies of drop size in membrane emulsification – Single pore studies of hydrodynamic detachment of droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470, 297-305.	4.7	11
44	Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids and Surfaces B: Biointerfaces, 2015, 128, 17-22.	5.0	203
45	Biocompatible Polymeric Nanoparticles as Promising Candidates for Drug Delivery. Langmuir, 2015, 31, 6415-6425.	3.5	47
46	Polyelectrolyte-coated nanocapsules containing undecylenic acid: Synthesis, biocompatibility and neuroprotective properties. Colloids and Surfaces B: Biointerfaces, 2015, 135, 8-17.	5.0	12
47	Self-healing epoxy coatings loaded with inhibitor-containing polyelectrolyte nanocapsules. Progress in Organic Coatings, 2015, 84, 97-106.	3.9	79
48	Biocompatible long-sustained release oil-core polyelectrolyte nanocarriers: From controlling physical state and stability to biological impact. Advances in Colloid and Interface Science, 2015, 222, 678-691.	14.7	122
49	Magnetically responsive liquid core polyelectrolyte nanocapsules. Journal of Microencapsulation, 2015, 32, 123-128.	2.8	10
50	Preparation of the squalene-based capsules by membrane emulsification method and polyelectrolyte multilayer adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 462, 147-152.	4.7	21
51	In Vitro Interaction of Polyelectrolyte Nanocapsules with Model Cells. Langmuir, 2014, 30, 1100-1107.	3.5	32
52	Cytotoxic activity of paclitaxel incorporated into polyelectrolyte nanocapsules. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	22
53	Self healing ability of inhibitor-containing nanocapsules loaded in epoxy coatings applied on aluminium 5083 and galvanneal substrates. Electrochimica Acta, 2014, 140, 282-293.	5.2	114
54	Formation of oil filled nanocapsules with silica shells modified by sequential adsorption of polyelectrolytes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 885-889.	4.7	29

KRZYSZTOF SZCZEPANOWICZ

#	Article	IF	CITATIONS
55	Albumin–furcellaran complexes as cores for nanoencapsulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 880-884.	4.7	18
56	Antireflection TiO x Coating with Plasmonic Metal Nanoparticles for Silicon Solar Cells. Plasmonics, 2013, 8, 41-43.	3.4	11
57	Emulsion-core and polyelectrolyte-shell nanocapsules: biocompatibility and neuroprotection against SH-SY5Y cells. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	19
58	Linseed oil based nanocapsules as delivery system for hydrophobic quantum dots. Colloids and Surfaces B: Biointerfaces, 2013, 110, 1-7.	5.0	27
59	Influence of dicephalic ionic surfactant interactions with oppositely charged polyelectrolyte upon the in vitro dye release from oil core nanocapsules. Bioelectrochemistry, 2012, 87, 147-153.	4.6	49
60	Polyelectrolyte multilayer capsules with quantum dots for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2012, 90, 211-216.	5.0	32
61	Novel approach to long sustained multilayer nanocapsules: influence of surfactant head groups and polyelectrolyte layer number on the release of hydrophobic compounds. Soft Matter, 2011, 7, 6113.	2.7	79
62	Encapsulation of liquid cores by layer-by-layer adsorption of polyelectrolytes. Journal of Microencapsulation, 2010, 27, 198-204.	2.8	69
63	Formation of Biocompatible Nanocapsules with Emulsion Core and Pegylated Shell by Polyelectrolyte Multilayer Adsorption. Langmuir, 2010, 26, 12592-12597.	3.5	94
64	Encapsulation of liquid cores by layer-by-layer adsorption of polyelectrolytes. Journal of Microencapsulation, 2010, 27, 090624002736013.	2.8	8
65	Chloroform Emulsions Containing TEOS, APS and DTSACl as Cores for Microencapsulation. Procedia Chemistry, 2009, 1, 1576-1583.	0.7	10