Esben Lorentzen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/714627/publications.pdf

Version: 2024-02-01

58 papers 5,102 citations

32 h-index 149698 56 g-index

70 all docs

70 docs citations

70 times ranked

5176 citing authors

#	Article	IF	Citations
1	Structure of the ciliogenesis-associated CPLANE complex. Science Advances, 2022, 8, eabn0832.	10.3	15
2	The ins and outs of the Arf4-based ciliary membrane-targeting complex. Small GTPases, 2021, 12, 1-12.	1.6	13
3	Nse5/6 inhibits the Smc5/6 ATPase and modulates DNA substrate binding. EMBO Journal, 2021, 40, e107807.	7.8	30
4	Ift88, but not Kif3a, is required for establishment of the periciliary membrane compartment. Biochemical and Biophysical Research Communications, 2021, 584, 19-25.	2.1	1
5	A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia. ELife, 2021, 10, .	6.0	29
6	<scp>IFT</scp> proteins interact with <scp>HSET</scp> to promote supernumerary centrosome clustering in mitosis. EMBO Reports, 2020, 21, e49234.	4.5	19
7	Purification and crystal structure of human ODA16: Implications for ciliary import of outer dynein arms by the intraflagellar transport machinery. Protein Science, 2020, 29, 1502-1510.	7.6	12
8	Moving proteins along in the cilium. ELife, 2020, 9, .	6.0	3
9	Structural insights into the architecture and assembly of eukaryotic flagella. Microbial Cell, 2020, 7, 289-299.	3.2	O
10	Structural insights into the architecture and assembly of eukaryotic flagella. Microbial Cell, 2020, 7, 289-299.	3.2	12
11	Akt Regulates a Rab11-Effector Switch Required for Ciliogenesis. Developmental Cell, 2019, 50, 229-246.e7.	7.0	45
12	Human IFT52 mutations uncover a novel role for the protein in microtubule dynamics and centrosome cohesion. Human Molecular Genetics, 2019, 28, 2720-2737.	2.9	23
13	Nucleoside analogue activators of cyclic AMP-independent protein kinase A of Trypanosoma. Nature Communications, 2019, 10, 1421.	12.8	33
14	Binding of IFT22 to the intraflagellar transport complex is essential for flagellum assembly. EMBO Journal, 2019, 38, .	7.8	38
15	Crystal structure of tetrameric human Rabin8 GEF domain. Proteins: Structure, Function and Bioinformatics, 2018, 86, 405-413.	2.6	3
16	Membrane association and remodeling by intraflagellar transport protein IFT172. Nature Communications, 2018, 9, 4684.	12.8	28
17	Crystal structure of intraflagellar transport protein 80 reveals a homo-dimer required for ciliogenesis. ELife, 2018, 7, .	6.0	36
18	Trafficking of ciliary membrane proteins by the intraflagellar transport/BBSome machinery. Essays in Biochemistry, 2018, 62, 753-763.	4.7	120

#	Article	IF	CITATIONS
19	Structural basis of outer dynein arm intraflagellar transport by the transport adaptor protein ODA16 and the intraflagellar transport protein IFT46. Journal of Biological Chemistry, 2017, 292, 7462-7473.	3.4	48
20	Intraflagellar transport protein IFT52 recruits IFT46 to the basal body and flagella. Journal of Cell Science, 2017, 130, 1662-1674.	2.0	35
21	IFT proteins spatially control the geometry of cleavage furrow ingression and lumen positioning. Nature Communications, 2017, 8, 1928.	12.8	20
22	Systematic proteomic analysis of LRRK2-mediated Rab GTPase phosphorylation establishes a connection to ciliogenesis. ELife, 2017, 6, .	6.0	344
23	Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases. ELife, 2016, 5, .	6.0	766
24	Complex Reconstitution from Individual Protein Modules. Advances in Experimental Medicine and Biology, 2016, 896, 305-314.	1.6	3
25	Recombinant Reconstitution and Purification of the IFT-B Core Complex from Chlamydomonas reinhardtii. Methods in Molecular Biology, 2016, 1454, 69-82.	0.9	7
26	The intraflagellar transport machinery in ciliary signaling. Current Opinion in Structural Biology, 2016, 41, 98-108.	5.7	72
27	Intraflagellar transport proteins 172, 80, 57, 54, 38,Âand 20 form a stable tubulinâ€binding <scp>IFT</scp> â€82 complex. EMBO Journal, 2016, 35, 773-790.	7.8	162
28	The Intraflagellar Transport Machinery. Cold Spring Harbor Perspectives in Biology, 2016, 8, a028092.	5.5	289
29	Novel topography of the Rab11-effector interaction network within a ciliary membrane targeting complex. Small GTPases, 2015, 6, 165-173.	1.6	15
30	Structure of Rab11–FIP3–Rabin8 reveals simultaneous binding of FIP3 and Rabin8 effectors to Rab11. Nature Structural and Molecular Biology, 2015, 22, 695-702.	8.2	40
31	<i>IFT81</i> , encoding an IFT-B core protein, as a very rare cause of a ciliopathy phenotype. Journal of Medical Genetics, 2015, 52, 657-665.	3.2	32
32	Mutations in TRAF3IP1/IFT54 reveal a new role for IFT proteins in microtubule stabilization. Nature Communications, 2015, 6, 8666.	12.8	84
33	Getting tubulin to the tip of the cilium: One IFT train, many different tubulin cargoâ€binding sites?. BioEssays, 2014, 36, 463-467.	2.5	36
34	Structural basis for membrane targeting of the BBSome by ARL6. Nature Structural and Molecular Biology, 2014, 21, 1035-1041.	8.2	77
35	Crystal structures of IFT70/52 and IFT52/46 provide insight into intraflagellar transport B core complex assembly. Journal of Cell Biology, 2014, 207, 269-282.	5.2	115
36	Molecular Basis of Tubulin Transport Within the Cilium by IFT74 and IFT81. Science, 2013, 341, 1009-1012.	12.6	271

3

#	Article	IF	CITATIONS
37	Intraflagellar transport complex structure and cargo interactions. Cilia, 2013, 2, 10.	1.8	99
38	Structural Studies of Ciliary Components. Journal of Molecular Biology, 2012, 422, 163-180.	4.2	69
39	Architecture and function of IFT complex proteins in ciliogenesis. Differentiation, 2012, 83, S12-S22.	1.9	169
40	Crystal Structure of a 9-Subunit Archaeal Exosome in Pre-Catalytic States of the Phosphorolytic Reaction. Archaea, 2012, 2012, 1-7.	2.3	19
41	Crystal structure of the intraflagellar transport complex 25/27. EMBO Journal, 2011, 30, 1907-1918.	7.8	108
42	Biochemical Mapping of Interactions within the Intraflagellar Transport (IFT) B Core Complex. Journal of Biological Chemistry, 2011, 286, 26344-26352.	3.4	71
43	RNA channelling by the eukaryotic exosome. EMBO Reports, 2010, 11, 936-942.	4.5	68
44	The Yeast Exosome Functions as a Macromolecular Cage to Channel RNA Substrates for Degradation. Cell, 2009, 139, 547-559.	28.9	225
45	Structural organization of the RNA-degrading exosome. Current Opinion in Structural Biology, 2008, 18, 709-713.	5.7	44
46	Structure of the Active Subunit of the Yeast Exosome Core, Rrp44: Diverse Modes of Substrate Recruitment in the RNase II Nuclease Family. Molecular Cell, 2008, 29, 717-728.	9.7	175
47	Chapter 20 Expression, Reconstitution, and Structure of an Archaeal RNA Degrading Exosome. Methods in Enzymology, 2008, 447, 417-435.	1.0	12
48	Molecular mechanisms of mRNA degradation. FASEB Journal, 2008, 22, 247.3.	0.5	0
49	RNA channelling by the archaeal exosome. EMBO Reports, 2007, 8, 470-476.	4.5	108
50	A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nature Structural and Molecular Biology, 2007, 14, 15-22.	8.2	381
51	The Exosome and the Proteasome: Nano-Compartments for Degradation. Cell, 2006, 125, 651-654.	28.9	69
52	Characterization of native and reconstituted exosome complexes from the hyperthermophilic archaeon Sulfolobus solfataricus. Molecular Microbiology, 2006, 62, 1076-1089.	2.5	51
53	The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nature Structural and Molecular Biology, 2005, 12, 575-581.	8.2	198
54	RNA polyadenylation in Archaea: not observed in Haloferax while the exosome polynucleotidylates RNA in Sulfolobus. EMBO Reports, 2005, 6, 1188-1193.	4. 5	82

#	Article	IF	CITATION
55	Mechanism of the Schiff Base Forming Fructose-1,6-bisphosphate Aldolase: Structural Analysis of Reaction Intermediates‡. Biochemistry, 2005, 44, 4222-4229.	2.5	62
56	Structural Basis of $3\hat{a} \in \mathbb{Z}^2$ End RNA Recognition and Exoribonucleolytic Cleavage by an Exosome RNase PH Core. Molecular Cell, 2005, 20, 473-481.	9.7	104
57	Structural Basis of Allosteric Regulation and Substrate Specificity of the Non-Phosphorylating Glyceraldehyde 3-Phosphate Dehydrogenase from Thermoproteus tenax. Journal of Molecular Biology, 2004, 341, 815-828.	4.2	48
58	Crystal Structure of an Archaeal Class I Aldolase and the Evolution of $(\hat{l}^2\hat{l}_\pm)$ 8 Barrel Proteins. Journal of Biological Chemistry, 2003, 278, 47253-47260.	3.4	45