
## Alessandro Pasuto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7146246/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                        | IF               | CITATIONS           |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|
| 1  | Landslide monitoring by using ground-based SAR interferometry: an example of application to the<br>Tessina landslide in Italy. Engineering Geology, 2003, 68, 15-30.           | 2.9              | 301                 |
| 2  | A critical review of landslide monitoring experiences. Engineering Geology, 2000, 55, 133-147.                                                                                 | 2.9              | 214                 |
| 3  | Landslides and climate change in the Italian Dolomites since the Late glacial. Catena, 2004, 55, 141-161.                                                                      | 2.2              | 184                 |
| 4  | Monitoring landslides from optical remotely sensed imagery: the case history of Tessina landslide,<br>Italy. Geomorphology, 2003, 54, 63-75.                                   | 1.1              | 162                 |
| 5  | Measurement of landslide displacements using a wire extensometer. Engineering Geology, 2000, 55, 149-166.                                                                      | 2.9              | 102                 |
| 6  | Distributed optical fibre sensing for early detection of shallow landslides triggering. Scientific Reports, 2017, 7, 14686.                                                    | 1.6              | 91                  |
| 7  | Using GB-SAR technique to monitor slow moving landslide. Engineering Geology, 2007, 95, 88-98.                                                                                 | 2.9              | 87                  |
| 8  | The submerged paleolandscape of the Maltese Islands: Morphology, evolution and relation to Quaternary environmental change. Marine Geology, 2013, 335, 129-147.                | 0.9              | 82                  |
| 9  | Field monitoring of the Corvara landslide (Dolomites, Italy) and its relevance for hazard assessment.<br>Geomorphology, 2005, 66, 149-165.                                     | 1.1              | 81                  |
| 10 | Characteristics and triggering mechanism of Xinmo landslide on 24 June 2017 in Sichuan, China.<br>Journal of Mountain Science, 2017, 14, 1689-1700.                            | 0.8              | 79                  |
| 11 | A visco-plastic model for slope analysis applied to a mudslide in Cortina d'Ampezzo, Italy. Quarterly<br>Journal of Engineering Geology and Hydrogeology, 1996, 29, 233-240.   | 0.8              | 75                  |
| 12 | A multidisciplinary approach for rock spreading and block sliding investigation in the north-western coast of Malta. Landslides, 2013, 10, 611-622.                            | 2.7              | 65                  |
| 13 | Landslide susceptibility modeling assisted by Persistent Scatterers Interferometry (PSI): an example from the northwestern coast of Malta. Natural Hazards, 2015, 78, 681-697. | 1.6              | 55                  |
| 14 | Monitoring, numerical modelling and hazard mitigation of the Moscardo landslide (Eastern Italian) Tj ETQq0 0 0                                                                 | rgBT/Over<br>2.9 | rlock 10 Tf 50      |
| 15 | Geomorphological map of the NW Coast of the Island of Malta (Mediterranean Sea). Journal of Maps, 2012, 8, 33-40.                                                              | 1.0              | 49                  |
| 16 | Temporal occurrence and activity of landslides in the area of Cortina d'Ampezzo (Dolomites, Italy).<br>Geomorphology, 1996, 15, 311-326.                                       | 1.1              | 45                  |
| 17 | A web-based platform for automatic and continuous landslide monitoring: The Rotolon (Eastern) Tj ETQq1 1 0.75                                                                  | 84314 rgB<br>2.0 | T /Overlock 1<br>44 |
|    |                                                                                                                                                                                |                  |                     |

| 18 | Distributed optical fiber | pressure sensors. | <b>Optical Fiber</b> | Technology, 2020, 58, 102239. |  |
|----|---------------------------|-------------------|----------------------|-------------------------------|--|
|----|---------------------------|-------------------|----------------------|-------------------------------|--|

1.4 43

Alessandro Pasuto

| #  | Article                                                                                                                                                                                                             | IF         | CITATIONS       |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|
| 19 | Simulation of the 1992 Tessina landslide by a cellular automata model and future hazard scenarios.<br>International Journal of Applied Earth Observation and Geoinformation, 2000, 2, 41-50.                        | 1.4        | 42              |
| 20 | Advanced SAR Interferometric Analysis to Support Geomorphological Interpretation of Slow-Moving<br>Coastal Landslides (Malta, Mediterranean Sea). Remote Sensing, 2016, 8, 443.                                     | 1.8        | 42              |
| 21 | Earthquake-triggered landslides affecting a UNESCO Natural Site: the 2017 Jiuzhaigou Earthquake in the World National Park, China. Journal of Mountain Science, 2018, 15, 1412-1428.                                | 0.8        | 36              |
| 22 | Fiber optic sensor for hydrostatic pressure and temperature measurement in riverbanks monitoring.<br>Optics and Laser Technology, 2016, 82, 57-62.                                                                  | 2.2        | 35              |
| 23 | New understandings of the June 24th 2017 Xinmo Landslide, Maoxian, Sichuan, China. Landslides, 2018,<br>15, 2465-2474.                                                                                              | 2.7        | 35              |
| 24 | Multi-temporal LiDAR-DTMs as a tool for modelling a complex landslide: a case study in the Rotolon catchment (eastern Italian Alps). Natural Hazards and Earth System Sciences, 2015, 15, 715-722.                  | 1.5        | 34              |
| 25 | Integration of laser scanning and thermal imaging in monitoring optimization and assessment of<br>rockfall hazard: a case history in the Carnic Alps (Northeastern Italy). Natural Hazards, 2015, 76,<br>1535-1549. | 1.6        | 34              |
| 26 | Highly Sensitive FBG Pressure Sensor Based on a 3D-Printed Transducer. Journal of Lightwave<br>Technology, 2019, 37, 4784-4790.                                                                                     | 2.7        | 32              |
| 27 | Major risk from rapid, large-volume landslides in Europe (EU Project RUNOUT). Geomorphology, 2003,<br>54, 3-9.                                                                                                      | 1.1        | 30              |
| 28 | An international program on Silk Road Disaster Risk Reduction–a Belt and Road initiative (2016–2020).<br>Journal of Mountain Science, 2018, 15, 1383-1396.                                                          | 0.8        | 30              |
| 29 | An integrated approach for hazard assessment and mitigation of debris flows in the Italian Dolomites.<br>Geomorphology, 2004, 61, 59-70.                                                                            | 1.1        | 28              |
| 30 | Collecting data to define future hazard scenarios of the Tessina landslide. International Journal of<br>Applied Earth Observation and Geoinformation, 2000, 2, 33-40.                                               | 1.4        | 26              |
| 31 | The use of landslide units in geomorphological mapping: an example in the Italian Dolomites.<br>Geomorphology, 1999, 30, 53-64.                                                                                     | 1.1        | 25              |
| 32 | Towards the definition of slope instability behaviour in the Alverà mudslide (Cortina d'Ampezzo,) Tj ETQq0 0 0 r                                                                                                    | gBT_/Overl | lock 10 Tf 50 2 |
| 33 | An Optical Fiber Distributed Pressure Sensing Cable With Pa-Sensitivity and Enhanced Spatial<br>Resolution. IEEE Sensors Journal, 2020, 20, 5900-5908.                                                              | 2.4        | 22              |
| 34 | A Rugged FBG-Based Pressure Sensor for Water Level Monitoring in Dikes. IEEE Sensors Journal, 2021, 21, 13263-13271.                                                                                                | 2.4        | 22              |
| 35 | An interactive web-GIS tool for risk analysis: a case study in the Fella River basin, Italy. Natural<br>Hazards and Earth System Sciences, 2016, 16, 85-101.                                                        | 1.5        | 21              |
| 36 | When Enough Is Really Enough? On the Minimum Number of Landslides to Build Reliable Susceptibility<br>Models. Geosciences (Switzerland), 2021, 11, 469.                                                             | 1.0        | 21              |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Application of a high resolution distributed temperature sensor in a physical model reproducing<br>subsurface water flow. Measurement: Journal of the International Measurement Confederation, 2017,<br>98, 321-324. | 2.5 | 20        |
| 38 | Changes in hydrological behaviours triggered by earthquake disturbance in a mountainous watershed. Science of the Total Environment, 2021, 760, 143349.                                                              | 3.9 | 19        |
| 39 | Management of a typhoon-induced landslide in Otomura (Japan). Geomorphology, 2010, 124, 150-156.                                                                                                                     | 1.1 | 18        |
| 40 | New Perspectives in Landslide Displacement Detection Using Sentinel-1 Datasets. Remote Sensing, 2019, 11, 2135.                                                                                                      | 1.8 | 16        |
| 41 | Hands-On Experience of Crowdsourcing for Flood Risks. An Android Mobile Application Tested in<br>Frederikssund, Denmark. International Journal of Environmental Research and Public Health, 2018, 15,<br>1926.       | 1.2 | 15        |
| 42 | Landslides Along the North-West Coast of the Island of Malta. , 2013, , 57-63.                                                                                                                                       |     | 15        |
| 43 | Coupling long-term GNSS monitoring and numerical modelling of lateral spreading for hazard assessment purposes. Engineering Geology, 2022, 296, 106466.                                                              | 2.9 | 15        |
| 44 | Assessment of debris flow multiple-surge load model based on the physical process of debris-barrier interaction. Landslides, 2022, 19, 1165-1177.                                                                    | 2.7 | 15        |
| 45 | Effects of episodic sediment supply on bedload transport rate in mountain rivers. Detecting debris flow activity using continuous monitoring. Geomorphology, 2018, 306, 198-209.                                     | 1.1 | 14        |
| 46 | Mapping Susceptibility With Open-Source Tools: A New Plugin for QGIS. Frontiers in Earth Science, 2022, 10, .                                                                                                        | 0.8 | 13        |
| 47 | The Spectacular Landslide-Controlled Landscape of the Northwestern Coast of Malta. World<br>Geomorphological Landscapes, 2019, , 167-178.                                                                            | 0.1 | 11        |
| 48 | Landslide susceptibility in the Belt and Road Countries: continental step of a multi-scale approach.<br>Environmental Earth Sciences, 2021, 80, 1.                                                                   | 1.3 | 11        |
| 49 | An example of a low-temperature-triggered landslide. Engineering Geology, 1993, 36, 53-65.                                                                                                                           | 2.9 | 10        |
| 50 | Comparison of 2-D and 3-D computer models for the M. Salta rock fall, Vajont Valley, northern Italy.<br>GeoInformatica, 2009, 13, 323-337.                                                                           | 2.0 | 8         |
| 51 | The Rotolon Catchment Early-Warning System. , 2015, , 91-95.                                                                                                                                                         |     | 6         |
| 52 | Evaluating data quality collected by volunteers for first-level inspection of hydraulic structures in mountain catchments. Natural Hazards and Earth System Sciences, 2014, 14, 2681-2698.                           | 1.5 | 5         |
| 53 | Capabilities of Continuous and Discontinuous Modelling of a Complex, Structurally Controlled<br>Landslide. Geotechnical and Geological Engineering, 2016, 34, 1677-1686.                                             | 0.8 | 5         |
| 54 | Disaster risk reduction in mountain areas: an initial overview on seeking pathways to global<br>sustainability. Journal of Mountain Science, 2022, 19, 1838-1846.                                                    | 0.8 | 5         |

Alessandro Pasuto

| #  | Article                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A Monitoring Network to Map and Assess Landslide Activity in a Highly Anthropized Area. Geosciences<br>(Switzerland), 2016, 6, 40.                   | 1.0 | 4         |
| 56 | Distributed acoustic sensing of debris flows in a physical model. , 2021, , .                                                                        |     | 4         |
| 57 | Backward automatic calibration for three-dimensional landslide models. Geoscience Frontiers, 2021, 12, 231-241.                                      | 4.3 | 3         |
| 58 | Integrated Monitoring of Lateral Spreading Phenomena Along the North-West Coast of the Island of Malta. , 2013, , 235-241.                           |     | 3         |
| 59 | Long-Term Monitoring to Support Landslide Inventory Maps: The Case of the North-Western Coast of the Island of Malta. , 2015, , 1307-1310.           |     | 2         |
| 60 | Disaster risk reduction in mountain areas: a research overview. Journal of Mountain Science, 2022, 19, 1487-1494.                                    | 0.8 | 2         |
| 61 | Landslide monitoring with an integrated platform: methodology, design and case study. Rendiconti<br>Online Societa Geologica Italiana, 0, 30, 24-27. | 0.3 | 1         |
| 62 | Ganderberg Landslide Characterization Through Monitoring. , 2015, , 1327-1331.                                                                       |     | 0         |