List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7146120/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                 | lF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Tuning the CHA framework composition by isomorphous substitution for CO2/CH4 separation.<br>Chemical Engineering Journal, 2022, 429, 131277.                                                            | 12.7 | 12        |
| 2  | Catalysis in Zeolites and Zeotypes—Cornerstone of Chemical Industry and Permanent Subject of<br>Research. Catalysts, 2022, 12, 53.                                                                      | 3.5  | 0         |
| 3  | Influence of Substrate Concentration on Kinetic Parameters of Ethanol Dehydration in MFI and CHA<br>Zeolites and Relation of These Kinetic Parameters to Acid–Base Properties. Catalysts, 2022, 12, 51. | 3.5  | 2         |
| 4  | Reactivity of internal vs. external BrĄ̃,nsted acid sites in nanosponge MFI: H/D exchange kinetic study.<br>Microporous and Mesoporous Materials, 2022, 332, 111717.                                    | 4.4  | 1         |
| 5  | BrÃ,nsted acidity in zeolites measured by deprotonation energy. Scientific Reports, 2022, 12, 7301.                                                                                                     | 3.3  | 14        |
| 6  | The analysis of the BAS OH band in zeolites. Microporous and Mesoporous Materials, 2022, 341, 112052.                                                                                                   | 4.4  | 3         |
| 7  | Physico-Chemical Changes in the KCl-MgCl2/La-FAU Composite Catalyst Induced by Oxidative Dehydrogenation of Ethane. Catalysts, 2021, 11, 392.                                                           | 3.5  | 1         |
| 8  | Analysis of the BAS OH band reveals a non-statistical incorporation of Al into the MOR framework.<br>Microporous and Mesoporous Materials, 2021, 317, 110994.                                           | 4.4  | 2         |
| 9  | Facile synthesis of WO3 fibers via centrifugal spinning as an efficient UV- and VIS-light-driven photocatalyst. Ceramics International, 2021, 47, 35361-35365.                                          | 4.8  | 17        |
| 10 | Re-examining the interpretation of CO adsorbed on Lewis acid sites of alkali metal-exchanged MOR zeolite. Microporous and Mesoporous Materials, 2020, 296, 110007.                                      | 4.4  | 3         |
| 11 | Cobalt Based Catalysts on Alkali-Activated Zeolite Foams for N2O Decomposition. Catalysts, 2020, 10,<br>1398.                                                                                           | 3.5  | 9         |
| 12 | Chiral Templating of Polycarbonate Membranes by Pinene Using the Modified Atomic Layer Deposition<br>Approach. Langmuir, 2020, 36, 12723-12734.                                                         | 3.5  | 3         |
| 13 | Efficient oxidative dehydrogenation of ethanol by VOx@MIL-101: On par with VOx/ZrO2 and much better than MIL-47(V). Catalysis Today, 2019, 324, 106-114.                                                | 4.4  | 9         |
| 14 | Ligand Excess "Inverse-Defected―Zr <sub>6</sub> Tetrahedral Tetracarboxylate Framework and Its<br>Thermal Transformation. Inorganic Chemistry, 2019, 58, 12786-12797.                                   | 4.0  | 3         |
| 15 | Adsorption and separation of the C3 hydrocarbons on cationic FER zeolites: Effect of dual sites existence. Microporous and Mesoporous Materials, 2019, 279, 416-422.                                    | 4.4  | 4         |
| 16 | Improvement of the conventional preparation methods in Co/BEA zeolites: Characterization and ethane ammoxidation. Solid State Sciences, 2019, 93, 13-23.                                                | 3.2  | 10        |
| 17 | The BrÃ,nsted acidity of three- and two-dimensional zeolites. Microporous and Mesoporous Materials,<br>2019, 282, 121-132.                                                                              | 4.4  | 21        |
| 18 | Clinoptilolite foams prepared by alkali activation of natural zeolite and their post-synthesis modifications. Microporous and Mesoporous Materials, 2019, 282, 169-178.                                 | 4.4  | 23        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | H/D reactivity and acidity of BrÃ,nsted acid sites of MWW zeolites: Comparison with MFI zeolite.<br>Applied Catalysis A: General, 2019, 575, 180-186.                                                                  | 4.3 | 10        |
| 20 | Experimental and theoretical study of propene adsorption on alkali metal exchanged FER zeolites.<br>Microporous and Mesoporous Materials, 2019, 280, 203-210.                                                          | 4.4 | 8         |
| 21 | Bismuth Oxychloride Nanoplatelets by Breakdown Anodization. ChemElectroChem, 2019, 6, 336-341.                                                                                                                         | 3.4 | 6         |
| 22 | Crystallization kinetics of glassy materials: the ultimate kinetic complexity?. Journal of Thermal Analysis and Calorimetry, 2018, 134, 825-834.                                                                       | 3.6 | 20        |
| 23 | Experimental and Theoretical Study of Propene Adsorption on K-FER Zeolites: New Evidence of Bridged<br>Complex Formation. Journal of Physical Chemistry C, 2018, 122, 6128-6136.                                       | 3.1 | 18        |
| 24 | Solid–state ion exchange of CoCl 2 ·6H 2 O into NH 4 + –Beta zeolite: Pathway analysis. Microporous<br>and Mesoporous Materials, 2018, 264, 218-229.                                                                   | 4.4 | 6         |
| 25 | Study on thermal stabilities and symmetries of chemisorbed species formed on K-zeolites upon CO2<br>adsorption by TPD and in situ IR spectroscopy. Journal of Thermal Analysis and Calorimetry, 2018, 133,<br>355-364. | 3.6 | 7         |
| 26 | Over– and low–exchanged Co/BEA catalysts: General characterization and catalytic behaviour in ethane ammoxidation. Catalysis Today, 2018, 304, 103-111.                                                                | 4.4 | 9         |
| 27 | Surfactant templated synthesis of porous VO x -ZrO 2 catalysts for ethanol conversion to acetaldehyde. Catalysis Today, 2018, 304, 64-71.                                                                              | 4.4 | 18        |
| 28 | Characterization of potassium-modified FAU zeolites and their performance in aldol condensation of furfural and acetone. Applied Catalysis A: General, 2018, 549, 8-18.                                                | 4.3 | 41        |
| 29 | VOx/Zr–SBA-15 catalysts for selective oxidation of ethanol to acetaldehyde. Chemical Papers, 2018, 72,<br>937-946.                                                                                                     | 2.2 | 6         |
| 30 | Temperature Dependence of Carbon Monoxide Adsorption on a High-Silica H-FER Zeolite. Journal of<br>Physical Chemistry C, 2018, 122, 26088-26095.                                                                       | 3.1 | 13        |
| 31 | Porous 10- and 12-vertex (bi)-p-dicarba-closo-boranedicarboxylates of cobalt and their gas adsorptive properties. Microporous and Mesoporous Materials, 2018, 271, 284-294.                                            | 4.4 | 8         |
| 32 | The effect of vanadium content and speciation on the activity of VOx/ZrO2 catalysts in the conversion of ethanol to acetaldehyde. Applied Catalysis A: General, 2018, 564, 208-217.                                    | 4.3 | 16        |
| 33 | Crystal formation in vanadium-doped zirconia ceramics. CrystEngComm, 2018, 20, 3105-3116.                                                                                                                              | 2.6 | 9         |
| 34 | Textural and morphology changes of mesoporous SBA-15 silica due to introduction of guest phase.<br>Pure and Applied Chemistry, 2017, 89, 481-491.                                                                      | 1.9 | 4         |
| 35 | SiO <sub>2</sub> Fibers by Centrifugal Spinning with Excellent Textural Properties and Water<br>Adsorption Performance. ACS Omega, 2017, 2, 5052-5059.                                                                 | 3.5 | 25        |
| 36 | The effect of the zeolite pore size on the Lewis acid strength of extra-framework cations. Physical Chemistry Chemical Physics, 2016, 18, 18063-18073.                                                                 | 2.8 | 9         |

| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | 10-Vertex closo-carborane: a unique ligand platform for porous coordination polymers.<br>CrystEngComm, 2016, 18, 2036-2040.                                                                     | 2.6  | 20        |
| 38 | Study of BrÃ,nsted acid site in H-MCM-22 zeolite by temperature-programmed desorption of ammonia.<br>Journal of Thermal Analysis and Calorimetry, 2016, 125, 1217-1224.                         | 3.6  | 4         |
| 39 | Theoretical and experimental study of CO adsorption on Ca-FER zeolite. Catalysis Today, 2015, 243, 53-61.                                                                                       | 4.4  | 11        |
| 40 | Comparative Study of Vanadium Supported on MCM-36 and MCM-22 and Their Catalytic Perfomance in C3-ODH. Industrial & Engineering Chemistry Research, 2015, 54, 2030-2039.                        | 3.7  | 7         |
| 41 | Answer to the comment by O. Cairon on "BrĄ̃nsted acidity of H-MCM-22 as probed by<br>variable-temperature infrared spectroscopy of adsorbed CO and N2― Catalysis Today, 2015, 252, 214-216.     | 4.4  | 1         |
| 42 | Infrared spectroscopic and thermodynamic assessment of extraframework cationic adsorption sites in the zeolite K-L by using CO as probe molecule. Chemical Physics Letters, 2015, 639, 195-198. | 2.6  | 7         |
| 43 | Application of trypsin Fe 3 O 4 @SiO 2 core/shell nanoparticles for protein digestion. Process Biochemistry, 2015, 50, 2088-2098.                                                               | 3.7  | 14        |
| 44 | Activity of Molybdenum Oxide Catalyst Supported on Al2O3, TiO2, and SiO2 Matrix in the Oxidative<br>Dehydrogenation of n-Butane. Topics in Catalysis, 2015, 58, 866-876.                        | 2.8  | 22        |
| 45 | Quantitative analysis of IR spectra of carbonylic species in alkali–metal exchanged ZSM-5 and FER zeolites. Catalysis Today, 2015, 243, 62-68.                                                  | 4.4  | 3         |
| 46 | Combined microcalorimetric and IR spectroscopic study on carbon dioxide adsorption in H-MCM-22.<br>Applied Surface Science, 2014, 316, 532-536.                                                 | 6.1  | 6         |
| 47 | Interaction of CO probe molecules with Cu(+) in MCM-22 zeolite. Microporous and Mesoporous Materials, 2014, 186, 37-45.                                                                         | 4.4  | 5         |
| 48 | Vanadium Mesoporous Silica Catalyst Prepared by Direct Synthesis as High Performing Catalyst in<br>Oxidative Dehydrogenation of n-Butane. Catalysis Letters, 2014, 144, 50-55.                  | 2.6  | 4         |
| 49 | Effect of support-active phase interactions on the catalyst activity and selectivity in deoxygenation of triglycerides. Applied Catalysis B: Environmental, 2014, 145, 101-107.                 | 20.2 | 115       |
| 50 | Measuring the BrÃ,nsted acid strength of zeolites – does it correlate with the O–H frequency shift<br>probed by a weak base?. Physical Chemistry Chemical Physics, 2014, 16, 10129-10141.       | 2.8  | 62        |
| 51 | One-pot synthesis of iron doped mesoporous silica catalyst for propane ammoxidation. Dalton<br>Transactions, 2014, 43, 3897.                                                                    | 3.3  | 7         |
| 52 | Adsorption of CO2 in FAU zeolites: Effect of zeolite composition. Catalysis Today, 2014, 227, 50-56.                                                                                            | 4.4  | 80        |
| 53 | BrÃ,nsted acidity of H-MCM-22 as probed by variable-temperature infrared spectroscopy of adsorbed CO and N2. Catalysis Today, 2014, 227, 45-49.                                                 | 4.4  | 22        |
| 54 | Determination of adsorption heats of individual adsorption complex by combination of microcalorimetry and FTIR spectroscopy. Journal of Thermal Analysis and Calorimetry, 2013, 113, 97-103.    | 3.6  | 3         |

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Combined Oxidative and Non-oxidative Dehydrogenation of n-Butane Over VOX Species Supported on HMS. Topics in Catalysis, 2013, 56, 662-671.                                                                                                 | 2.8 | 7         |
| 56 | CO and NO adsorption on VO x /SBA-15 catalysts: an FT-IR spectroscopic study. Adsorption, 2013, 19, 339-347.                                                                                                                                | 3.0 | 4         |
| 57 | Energetic heterogeneity of Cu+-carbonyl complexes in Y zeolites: Kinetics of CO desorption studied by FTIR combined with CO adsorption microcalorimetry. Microporous and Mesoporous Materials, 2013, 171, 185-195.                          | 4.4 | 14        |
| 58 | High temperature pretreatment of Fe-silicalite for the ammoxidation of propane. Catalysis Today, 2013, 204, 54-59.                                                                                                                          | 4.4 | 4         |
| 59 | Possibility of VOx/SiO2 Complexes Speciation: Comparative Multi-wavelength Raman and DR UV-vis<br>Study. Physics Procedia, 2013, 44, 195-205.                                                                                               | 1.2 | 22        |
| 60 | Hexagonal mesoporous titanosilicates as support for vanadium oxide—Promising catalysts for the oxidative dehydrogenation of n-butane. Catalysis Today, 2013, 204, 132-139.                                                                  | 4.4 | 23        |
| 61 | Study of thermodynamic characteristics of CO adsorption on Li exchanged zeolites. Adsorption, 2013, 19, 381-389.                                                                                                                            | 3.0 | 8         |
| 62 | Coordination of extraframework Li+ cation in the MCM-22 and MCM-36 zeolite: FTIR study of CO adsorbed. Adsorption, 2013, 19, 455-463.                                                                                                       | 3.0 | 9         |
| 63 | Structural changes in FeMFI during its activation for the direct ammoxidation of propane. Catalysis Science and Technology, 2013, 3, 1634-1643.                                                                                             | 4.1 | 1         |
| 64 | Effect of the pretreatment of Fe-silicalite on its activity in the ammoxidation of propane. Catalysis<br>Today, 2012, 179, 73-77.                                                                                                           | 4.4 | 6         |
| 65 | Study of vanadium based mesoporous silicas for oxidative dehydrogenation of propane and n-butane.<br>Catalysis Today, 2012, 179, 149-158.                                                                                                   | 4.4 | 60        |
| 66 | Effect of preparation method on nature and distribution of vanadium species in vanadium-based<br>hexagonal mesoporous silica catalysts: Impact on catalytic behavior in propane ODH. Applied Catalysis<br>A: General, 2012, 415-416, 29-39. | 4.3 | 55        |
| 67 | Carbon monoxide adsorption on alkali-metal exchanged BEA zeolite: IR and thermodynamics study.<br>Microporous and Mesoporous Materials, 2012, 151, 149-156.                                                                                 | 4.4 | 15        |
| 68 | The quantity of Cu+ ions forming isolated and bridged carbonyl complexes in FER zeolites determined by IR spectroscopy. Vibrational Spectroscopy, 2012, 58, 146-152.                                                                        | 2.2 | 7         |
| 69 | Combined Experimental and Theoretical Investigations of Heterogeneous Dual Cation Sites in Cu,M-FER Zeolites. Journal of Physical Chemistry C, 2011, 115, 13312-13321.                                                                      | 3.1 | 20        |
| 70 | DR UV–vis Study of the Supported Vanadium Oxide Catalysts. Journal of Physical Chemistry C, 2011, 115, 12430-12438.                                                                                                                         | 3.1 | 72        |
| 71 | Study of adsorption sites heterogeneity in zeolites by means of coupled microcalorimetry with volumetry. Journal of Thermal Analysis and Calorimetry, 2011, 105, 443-449.                                                                   | 3.6 | 24        |
| 72 | Thermodynamics of CO probe molecule adsorption on Cu–FER-zeolite comparison of TPD, FTIR, and microcalorimetry results. Journal of Thermal Analysis and Calorimetry, 2011, 105, 837-844.                                                    | 3.6 | 6         |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Activity of the Ni–Al Mixed Oxides Prepared from Hydrotalcite-Like Precursors in the Oxidative<br>Dehydrogenation of Ethane and Propane. Topics in Catalysis, 2011, 54, 1151-1162.                                                  | 2.8 | 28        |
| 74 | n-Butane oxidative dehydrogenation over VO -HMS catalyst. Journal of Molecular Catalysis A, 2011, 344, 1-10.                                                                                                                        | 4.8 | 49        |
| 75 | Microcalorimetric and FTIR Study of the Adsorption of Carbon Dioxide on Alkali-Metal Exchanged FER<br>Zeolites. Topics in Catalysis, 2010, 53, 1349-1360.                                                                           | 2.8 | 49        |
| 76 | Ammoxidation of propane over Fe-zeolites: Effect of reaction variables and catalyst composition and structure. Catalysis Today, 2009, 141, 254-259.                                                                                 | 4.4 | 3         |
| 77 | Oxidative dehydrogenation of ethane over vanadium-based hexagonal mesoporous silica catalysts.<br>Catalysis Today, 2009, 141, 282-287.                                                                                              | 4.4 | 32        |
| 78 | Localization and Coordination of Mg <sup>2+</sup> Cations in Ferrierite: Combined FTIR Spectroscopic<br>and Computation Investigation of CO Adsorption Complexes. Journal of Physical Chemistry C, 2009, 113,<br>11066-11076.       | 3.1 | 22        |
| 79 | Oxidative dehydrogenation of ethane over vanadium supported on mesoporous materials of M41S<br>family. Applied Catalysis A: General, 2008, 342, 99-106.                                                                             | 4.3 | 65        |
| 80 | The Feasibility of Ni-Alumina Catalysts in Oxidative Dehydrogenation of Ethane. Collection of Czechoslovak Chemical Communications, 2008, 73, 1177-1191.                                                                            | 1.0 | 10        |
| 81 | Vibrational dynamics of small molecules adsorbed on cation sites in zeolite channel systems: IR and DFT investigation. Studies in Surface Science and Catalysis, 2008, , 869-872.                                                   | 1.5 | 2         |
| 82 | Computational and Fourier Transform Infrared Spectroscopic Studies on Carbon Monoxide<br>Adsorption on the Zeolites Na-ZSM-5 and K-ZSM-5:  Evidence of Dual-Cation Sites. Journal of Physical<br>Chemistry C, 2008, 112, 4658-4666. | 3.1 | 63        |
| 83 | Combined TPD and theoretical investigation of CO desorption from Cu-K-FER zeolite. Studies in Surface Science and Catalysis, 2008, , 893-896.                                                                                       | 1.5 | 3         |
| 84 | Evidence of heterogeneous dual cation sites in zeolites by combined IR and DFT investigation. Studies in Surface Science and Catalysis, 2008, , 1005-1008.                                                                          | 1.5 | 8         |
| 85 | Ammoxidation of propane over Fe-zeolites: effect of reaction variables, catalyst composition and catalyst structure. Studies in Surface Science and Catalysis, 2008, 174, 1151-1154.                                                | 1.5 | 4         |
| 86 | Effect of the nature and the distribution of vanadium Species on the catalytic behavior of vanadium-based silica catalysts. Studies in Surface Science and Catalysis, 2008, , 1295-1298.                                            | 1.5 | 3         |
| 87 | Kinetics of Reduction of Cu Ions in MFI Zeolite Investigated by H2-TPR Method. Collection of Czechoslovak Chemical Communications, 2008, 73, 1132-1148.                                                                             | 1.0 | 2         |
| 88 | FTIR Study of CO Interactions with Li <i><sup>+</sup></i> lons in Micro- and Mesoporous Matrices:<br>Coordination and Localization of Li <i><sup>+</sup></i> lons. Journal of Physical Chemistry C, 2007, 111,<br>11353-11362.      | 3.1 | 22        |
| 89 | Periodic density functional and FTIR spectroscopic studies on CO adsorption on the zeolite Na-FER.<br>Microporous and Mesoporous Materials, 2007, 106, 162-173.                                                                     | 4.4 | 44        |
| 90 | Vanadium supported on hexagonal mesoporous silica: active and stable catalysts in the oxidative dehydrogenation of alkanes. Topics in Catalysis, 2007, 45, 51-55.                                                                   | 2.8 | 28        |

| #   | Article                                                                                                                                                                                              | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Direct ammoxidation of propane over zeolites with traces of iron. Topics in Catalysis, 2007, 45, 233-237.                                                                                            | 2.8  | 9         |
| 92  | On the site-specificity of polycarbonyl complexes in Cu/zeolites: combined experimental and DFT study.<br>Physical Chemistry Chemical Physics, 2006, 8, 5535-5542.                                   | 2.8  | 35        |
| 93  | The vibrational dynamics of carbon monoxide in a confined space—CO in zeolites. Physical Chemistry<br>Chemical Physics, 2006, 8, 4849-4852.                                                          | 2.8  | 74        |
| 94  | Single and Dual Cation Sites in Zeolites:Â Theoretical Calculations and FTIR Spectroscopic Studies on<br>CO Adsorption on K-FER. Journal of Physical Chemistry B, 2006, 110, 22542-22550.            | 2.6  | 79        |
| 95  | Theoretical investigation of site-specific characteristics of CO adsorption complexes in the Li+-FER zeolite. Applied Catalysis A: General, 2006, 307, 118-127.                                      | 4.3  | 43        |
| 96  | Characterization of the Cu+ sites in MFI zeolites: combined computational and experimental study.<br>Catalysis Today, 2005, 100, 385-389.                                                            | 4.4  | 21        |
| 97  | Oxidation of propane with oxygen, nitrous oxide and oxygen/nitrous oxide mixture over Co- and<br>Fe-zeolites. Catalysis Today, 2005, 100, 315-319.                                                   | 4.4  | 11        |
| 98  | Occurrence of Fe species in Fe-zeolites active in propane oxidation with N2O to propene and propanal.<br>Studies in Surface Science and Catalysis, 2005, 158, 1977-1984.                             | 1.5  | 3         |
| 99  | Oxidation of propane with oxygen and/or nitrous oxide over Fe-ZSM-5 with low iron concentrations.<br>Applied Catalysis A: General, 2004, 264, 13-22.                                                 | 4.3  | 66        |
| 100 | Investigation of IR vibrational band of C–O bond of carbonyl species in Cu+-MFI zeolites. Physical Chemistry Chemical Physics, 2004, 6, 4208-4214.                                                   | 2.8  | 25        |
| 101 | Localization of Cu+sites and framework Al positions in high-silica zeolites: Combined experimental and theoretical study. Physical Chemistry Chemical Physics, 2004, 6, 2003-2007.                   | 2.8  | 29        |
| 102 | Oxidative dehydrogenation of propane by nitrous oxide and/or oxygen over Co beta zeolite. Reaction<br>Kinetics and Catalysis Letters, 2003, 80, 337-343.                                             | 0.6  | 11        |
| 103 | Characterization of the Cu+Sites in High-Silica Zeolites Interacting with the CO Molecule:Â Combined<br>Computational and Experimental Study. Journal of Physical Chemistry B, 2003, 107, 2327-2332. | 2.6  | 69        |
| 104 | Oxidative dehydrogenation and ammoxidation of ethane and propane over pentasil ring Co-zeolites.<br>Applied Catalysis A: General, 2002, 235, 181-191.                                                | 4.3  | 67        |
| 105 | Reducibility and oxidation activity of Cu ions in zeolites. Applied Catalysis B: Environmental, 2001, 31, 13-25.                                                                                     | 20.2 | 151       |