
Jonas Mureika

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7146006/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sub-Planckian black holes and the Generalized Uncertainty Principle. Journal of High Energy Physics, 2015, 2015, 1.	4.7	90
2	Lower-dimensional black hole chemistry. Physical Review D, 2015, 92, .	4.7	73
3	Self-completeness and the generalized uncertainty principle. Journal of High Energy Physics, 2013, 2013, 1.	4.7	52
4	Detecting Vanishing Dimensions via Primordial Gravitational Wave Astronomy. Physical Review Letters, 2011, 106, 101101.	7.8	49
5	Extended Uncertainty Principle black holes. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 789, 88-92.	4.1	48
6	Could any black holes be produced at the LHC?. Physical Review D, 2012, 85, .	4.7	38
7	Quasinormal modes of modified gravity (MOG) black holes. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 779, 492-497.	4.1	36
8	Black hole shadows in fourth-order conformal Weyl gravity. Canadian Journal of Physics, 2017, 95, 1299-1306.	1.1	35
9	Unparticle-enhanced black holes at the LHC. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2008, 660, 561-566.	4.1	33
10	Comparison of 1mQ2corrections in mesons and baryons. Physical Review D, 1994, 49, 2359-2362.	4.7	29
11	DOES ENTROPIC GRAVITY BOUND THE MASSES OF THE PHOTON AND GRAVITON?. Modern Physics Letters A, 2011, 26, 171-181.	1.2	29
12	Primordial black hole evaporation and spontaneous dimensional reduction. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2012, 716, 171-175.	4.1	28
13	Three-flavor gravitationally induced neutrino oscillations and the solar neutrino problem. Physical Review D, 1996, 54, 2761-2778.	4.7	27
14	Self-completeness and spontaneous dimensional reduction. European Physical Journal Plus, 2013, 128, 1.	2.6	25
15	Mass or gravitationally-induced neutrino oscillations? — a comparison of 8B neutrino flux spectra in a three-generation framework. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1996, 368, 112-118.	4.1	24
16	Vector unparticle enhanced black holes: Exact solutions and thermodynamics. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2010, 693, 129-133.	4.1	22
17	Self-complete and GUP-modified charged and spinning black holes. European Physical Journal C, 2020, 80, 1.	3.9	20
18	Investigation of equivalence principle violations using solar neutrino oscillations in a constant gravitational potential. Physical Review D, 1997, 56, 2408-2418.	4.7	19

Jonas Mureika

#	Article	IF	CITATIONS
19	Differentiating unparticles from extra dimensions via mini black hole thermodynamics. Physical Review D, 2009, 79, .	4.7	19
20	Horizon of quantum black holes in various dimensions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 760, 36-44.	4.1	15
21	The Abstract Expressionists and Les Automatistes: A shared multi-fractal depth?. Signal Processing, 2013, 93, 573-578.	3.7	14
22	Mureika and Stojkovic Reply:. Physical Review Letters, 2011, 107, .	7.8	13
23	Review: Multifractal Analysis of Packed Swiss Cheese Cosmologies. General Relativity and Gravitation, 2004, 36, 151-184.	2.0	11
24	Generalized uncertainty principle and black holes in higher dimensional self-complete gravity. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 008-008.	5.4	9
25	On the mass of bootstrapped Newtonian sources. Modern Physics Letters A, 2020, 35, 2050172.	1.2	7
26	Universality of minimal length. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022, 831, 137182.	4.1	7
27	Constraints on Vector Unparticle Physics from Cosmic Censorship. International Journal of Theoretical Physics, 2012, 51, 1259-1267.	1.2	5
28	Primordial black holes in a dimensionally reduced universe. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 033-033.	5.4	4
29	Quasinormal Modes of Modified Gravity (MOG) Black Holes. Journal of Undergraduate Reports in Physics, 2019, 29, .	0.1	4
30	PRODUCTION AND EVAPORATION OF PLANCK SCALE BLACK HOLES AT THE LHC. , 2015, , .		2
31	Implications for Cognitive Quantum Computation and Decoherence Limits in the Presence of Large Extra Dimensions. International Journal of Theoretical Physics, 2007, 46, 130-142.	1.2	1
32	Lower-dimensional corpuscular gravity and the end of black hole evaporation. Modern Physics Letters A, 2019, 34, 1950174.	1.2	1
33	Compact sources and cosmological horizons in lower dimensional bootstrapped Newtonian gravity. Classical and Quantum Gravity, 2021, 38, 065020.	4.0	1
34	TOWARD A HOLOGRAPHIC ORIGIN OF COSMOLOGICAL LARGE SCALE STRUCTURE. , 2008, , .		0
35	Horizon Wavefunction of Generalized Uncertainty Principle Black Holes. Advances in High Energy Physics, 2016, 2016, 1-8.	1.1	Ο
36	Self–completeness in Alternative Theories of Gravity. Springer Proceedings in Physics, 2016, , 95-101.	0.2	0