Juan Cabanillas-GonzÃ;lez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7145982/publications.pdf

Version: 2024-02-01

90 papers 2,394 citations

236833 25 h-index 233338 45 g-index

90 all docs 90 docs citations

90 times ranked 3245 citing authors

#	Article	IF	CITATIONS
1	Tuning the Optical Properties of Au Nanoclusters by Designed Proteins. Advanced Optical Materials, 2022, 10, 2101332.	3.6	14
2	New insights into structure/optical waveguide behavior relationships in linear bisethynylbenzenes. Journal of Materials Chemistry C, 2022, 10, 6411-6418.	2.7	8
3	Coveâ€Edged Hexaâ€∢i>perià€hexabenzoâ€bisâ€xi>periâ€octacene: Molecular Conformations and Ampli Spontaneous Emission. Angewandte Chemie, 2022, 134, .	ified 1.6	8
4	Coveâ€Edged Hexaâ€∢i>perià€hexabenzoâ€bisâ€ <i>peri</i> â€octacene: Molecular Conformations and Ampli Spontaneous Emission. Angewandte Chemie - International Edition, 2022, 61, .	ified 7.2	22
5	Towards rainbow photo/electro-luminescence in copper(<scp>i</scp>) complexes with the versatile bridged bis-pyridyl ancillary ligand. Dalton Transactions, 2021, 50, 11049-11060.	1.6	11
6	Covalent modification of franckeite with maleimides: connecting molecules and van der Waals heterostructures. Nanoscale Horizons, 2021, 6, 551-558.	4.1	14
7	Toward Electrically Pumped Organic Lasers: A Review and Outlook on Material Developments and Resonator Architectures. Advanced Photonics Research, 2021, 2, 2000155.	1.7	42
8	Organic Semiconductor Micro/Nanocrystals for Laser Applications. Molecules, 2021, 26, 958.	1.7	7
9	Origin of Intramolecular Lowâ€Threshold Amplified Spontaneous Emission. Advanced Optical Materials, 2021, 9, 2001956.	3.6	5
10	Reversible Protonation of Porphyrinic Metalâ€Organic Frameworks Embedded in Nanoporous Polydimethylsiloxane for Colorimetric Sensing. Advanced Materials Interfaces, 2021, 8, 2001759.	1.9	13
11	Multidimensional Ln-Aminophthalate Photoluminescent Coordination Polymers. Materials, 2021, 14, 1786.	1.3	1
12	Nuclearity Control for Efficient Thermally Activated Delayed Fluorescence in a Cu ^I Complex and its Halogen-Bridged Dimer. Chemistry of Materials, 2021, 33, 6383-6393.	3.2	12
13	Boosting the Photoluminescent Properties of Protein-Stabilized Gold Nanoclusters through Protein Engineering. Nano Letters, 2021, 21, 9347-9353.	4.5	20
14	Matrix Encapsulation of Solutionâ€Processed Thiopheneâ€Based Fluorophores for Enhanced Red and Green Amplified Spontaneous Emission. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900493.	1.2	6
15	Bright, stable, and efficient red light-emitting electrochemical cells using contorted nanographenes. Nanoscale Horizons, 2020, 5, 473-480.	4.1	18
16	Revealing the Impact of Heat Generation Using Nanographene-Based Light-Emitting Electrochemical Cells. ACS Applied Materials & Interfaces, 2020, 12, 28426-28434.	4.0	24
17	Self-Assembled Amphiphilic Molecules for Highly Efficient Photocatalytic Hydrogen Evolution from Water. Journal of Physical Chemistry C, 2020, 124, 6971-6978.	1.5	7
18	Divergent Adsorption-Dependent Luminescence of Amino-Functionalized Lanthanide Metal–Organic Frameworks for Highly Sensitive NO ₂ Sensors. Journal of Physical Chemistry Letters, 2020, 11, 3362-3368.	2.1	50

#	Article	IF	CITATIONS
19	A lanthanide MOF immobilized in PMMA transparent films as a selective fluorescence sensor for nitroaromatic explosive vapours. Journal of Materials Chemistry C, 2020, 8, 3626-3630.	2.7	39
20	Luminescent MOF crystals embedded in PMMA/PDMS transparent films as effective NO ₂ gas sensors. Molecular Systems Design and Engineering, 2020, 5, 1048-1056.	1.7	34
21	Origin of the Exclusive Ternary Electroluminescent Behavior of BNâ€Doped Nanographenes in Efficient Singleâ€Component White Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2020, 30, 1906830.	7.8	23
22	Steric Poly(diarylfluoreneâ€∢i>coâ€benzothiadiazole) for Efficient Amplified Spontaneous Emission and Polymer Lightâ€Emitting Diodes: Benefit from Preventing Interchain Aggregation and Polaron Formation. Advanced Optical Materials, 2020, 8, 1901616.	3.6	7
23	Simultaneously Enhancing Photoluminescence Quantum Efficiency and Optical Gain of Polyfluorene via Backbone Intercalation of 2,5â€Dimethylâ€1,4â€Phenylene. Advanced Optical Materials, 2020, 8, 2000187.	3.6	4
24	Deepâ€Blue Thiopheneâ€Based Steric Oligomers as a Lowâ€Threshold Laser Gain and Host Material. Advanced Optical Materials, 2020, 8, 1902163.	3.6	11
25	Subppm Amine Detection via Absorption and Luminescence Turn-On Caused by Ligand Exchange in Metal Organic Frameworks. Analytical Chemistry, 2019, 91, 15853-15859.	3.2	37
26	Engineered protein-based functional nanopatterned materials for bio-optical devices. Nanoscale Advances, 2019, 1, 3980-3991.	2.2	17
27	Flexible distributed feedback lasers based on nanoimprinted cellulose diacetate with efficient multiple wavelength lasing. Npj Flexible Electronics, 2019, 3, .	5.1	22
28	A near infrared light emitting electrochemical cell with a 2.3 V turn-on voltage. Scientific Reports, 2019, 9, 228.	1.6	15
29	Entropy-Driven Heterocomplexation of Conjugated Polymers in Highly Diluted Solutions. Journal of Physical Chemistry C, 2019, 123, 16596-16601.	1.5	2
30	Assembly-Induced Bright-Light Emission from Solution-Processed Platinum(II) Inorganic Polymers. ACS Omega, 2019, 4, 10192-10204.	1.6	6
31	Hierarchical Uniform Supramolecular Conjugated Spherulites with Suppression of Defect Emission. IScience, 2019, 16, 399-409.	1.9	30
32	Facile and Controllable Fabrication of Highâ€Performance Methylammonium Lead Triiodide Films Using Lead Acetate Precursor for Lowâ€Threshold Amplified Spontaneous Emission and Distributedâ€Feedback Lasers. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900176.	1.2	3
33	A Simple Approach to Design Proteins for the Sustainable Synthesis of Metal Nanoclusters. Angewandte Chemie - International Edition, 2019, 58, 6214-6219.	7.2	61
34	A Simple Approach to Design Proteins for the Sustainable Synthesis of Metal Nanoclusters. Angewandte Chemie, 2019, 131, 6280-6285.	1.6	3
35	Impact of molecular conformation on triplet-fusion induced photon energy up-conversion in the absence of exothermic triplet energy transfer. Journal of Materials Chemistry C, 2019, 7, 3634-3643.	2.7	7
36	Concurrent Optical Gain Optimization and Electrical Tuning in Novel Oligomer:Polymer Blends with Yellowâ€Green Laser Emission. Advanced Science, 2019, 6, 1801455.	5.6	12

#	Article	IF	CITATIONS
37	Ultrastable Supramolecular Selfâ€Encapsulated Wideâ€Bandgap Conjugated Polymers for Largeâ€Area and Flexible Electroluminescent Devices. Advanced Materials, 2019, 31, e1804811.	11.1	72
38	Host Exciton Confinement for Enhanced Försterâ€Transferâ€Blend Gain Media Yielding Highly Efficient Yellowâ€Green Lasers. Advanced Functional Materials, 2018, 28, 1705824.	7.8	39
39	Amplified spontaneous emission in action: Sub-ppm optical detection of acid vapors in poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] thin films. Sensors and Actuators B: Chemical, 2018, 255, 1354-1361.	4.0	11
40	Amplified spontaneous emission in insulated polythiophenes. Journal of Materials Chemistry C, 2018, 6, 6591-6596.	2.7	24
41	Efficient Optical Gain from Nearâ€Infrared Polymer Lasers Based on Poly[<i>N</i> à€9′â€heptadecanylâ€2,7â€carbazoleâ€ <i>alt</i> à65,5â€(4′,7′â€diâ€2â€thienylâ€2′, Optical Materials, 2018, 6, 1800263.	1â € 33′	² â€ b ænzoth¦ac
42	Combinatorial optimization of evaporated bilayer small molecule organic solar cells through orthogonal thickness gradients. Organic Electronics, 2018, 59, 288-292.	1.4	8
43	Synthesis and characterization of two fluorescent isophthalate rosamines: From solution to immobilization in solid substrates. Dyes and Pigments, 2018, 157, 405-414.	2.0	3
44	Highly pH-responsive sensor based on amplified spontaneous emission coupled to colorimetry. Scientific Reports, 2017, 7, 46265.	1.6	3
45	Ag/Ag ₂ S Nanocrystals for High Sensitivity Nearâ€Infrared Luminescence Nanothermometry. Advanced Functional Materials, 2017, 27, 1604629.	7.8	110
46	Preparation of Luminescent Metal-Organic Framework Films by Soft-Imprinting for 2,4-Dinitrotoluene Sensing. Materials, 2017, 10, 992.	1.3	25
47	Flexible all-polymer waveguide for low threshold amplified spontaneous emission. Scientific Reports, 2016, 6, 34565.	1.6	26
48	Novel Fluorene-Based Copolymers Containing Branched 2-Methyl-butyl-Substituted Fluorene- <i>co</i> -benzothiadiazole Units for Remarkable Optical Gain Enhancement in Green-Yellow Emission Range. Journal of Physical Chemistry C, 2016, 120, 11350-11358.	1.5	26
49	Quantifying the efficiency of förster-assisted optical gain in semiconducting polymer blends by excitation wavelength selective amplified spontaneous emission. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2311-2317.	2.4	8
50	A fluorescence gas sensor based on Förster Resonance Energy Transfer between polyfluorene and bromocresol green assembled in thin films. Sensors and Actuators B: Chemical, 2016, 236, 136-143.	4.0	12
51	Fluoreneâ€based rib waveguides with optimized geometry for longâ€term amplified spontaneous emission stability. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1040-1045.	2.4	5
52	Ground State Host–Guest Interactions upon Effective Dispersion of Regioregular Poly(3-hexylthiophene) in Poly(9,9-dioctylfluorene- <i>alt</i> benzothiadiazole). Macromolecules, 2015, 48, 8765-8772.	2.2	13
53	Hâ€Shaped Oligofluorenes for Highly Airâ€Stable and Lowâ€Threshold Nonâ€Doped Deep Blue Lasing. Advanced Materials, 2014, 26, 2937-2942.	11.1	57
54	On the role of aggregation effects in the performance of perylene-diimide based solar cells. Organic Electronics, 2014, 15, 1347-1361.	1.4	60

#	Article	IF	Citations
55	Amplified Spontaneous Emission in Conjugated Polyrotaxanes Under Quasiâ€ew Pumping. Advanced Materials, 2013, 25, 4347-4351.	11.1	45
56	Deep-red excimer emission from Ir doped organic light-emitting devices. Journal of Materials Chemistry C, 2013, 1, 3606.	2.7	8
57	Improving the layer morphology of solution-processed perylene diimide organic solar cells with the use of a polymeric interlayer. Organic Photonics and Photovoltaics, 2013, 1, .	1.3	7
58	Role of amorphous and aggregate phases on field-induced exciton dissociation in a conjugated polymer. Physical Review B, 2013, 87, .	1.1	8
59	Ultrafast spectroscopy of linear carbon chains: the case of dinaphthylpolyynes. Physical Chemistry Chemical Physics, 2013, 15, 9384.	1.3	15
60	Effect of Structure and Interlayer Diffusion in Organic Position Sensitive Photodetectors Based on Complementary Wedge Donor/Acceptor Layers. Journal of Nanoscience and Nanotechnology, 2013, 13, 5148-5153.	0.9	4
61	Spectroscopic Signature of Trap States in Assembled CdSe Nanocrystal Hybrid Films. Journal of Physical Chemistry C, 2012, 116, 16259-16263.	1.5	9
62	Europium complex-based thermochromic sensor for integration in plastic optical fibres. Optical Materials, 2012, 34, 1447-1450.	1.7	10
63	Electric field and charge distribution imaging with sub-micron resolution in an organic Thin-Film Transistor. Organic Electronics, 2012, 13, 66-70.	1.4	16
64	Transient Absorption Imaging of P3HT:PCBM Photovoltaic Blend: Evidence For Interfacial Charge Transfer State. Journal of Physical Chemistry Letters, 2011, 2, 1099-1105.	2.1	171
65	Pumpâ€Probe Spectroscopy in Organic Semiconductors: Monitoring Fundamental Processes of Relevance in Optoelectronics. Advanced Materials, 2011, 23, 5468-5485.	11.1	131
66	Organic position sensitive photodetectors based on lateral donor-acceptor concentration gradients. Applied Physics Letters, 2011, 99, .	1.5	16
67	Gain and ultrafast optical switching in PMMA optical fibers and films doped with luminescent conjugated polymers and oligomers. Frontiers of Optoelectronics in China, 2010, 3, 45-53.	0.2	14
68	Ultrafast optical gain switch in organic photonic devices. Journal of Materials Chemistry, 2010, 20, 519-523.	6.7	24
69	Imaging the Electricâ€Field Distribution in Organic Devices by Confocal Electroreflectance Microscopy. Advanced Functional Materials, 2009, 19, 1180-1185.	7.8	10
70	Pump-push-probe transient spectroscopy of isolated conjugated oligomers. Springer Series in Chemical Physics, 2009, , 463-465.	0.2	2
71	Evidence of photoinduced charge transfer in C60/GaAs(100) bilayers by pump–probe measurements. Chemical Physics Letters, 2008, 466, 65-67.	1.2	7
72	A planar organic near infrared light detector based on bulk heterojunction of a heteroquaterphenoquinone and poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1, 4-phenylene vinylene]. Journal of Applied Physics, 2008, 104, .	1.1	27

#	Article	IF	Citations
7 3	Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers. Journal of Nanophotonics, 2008, 2, 023504.	0.4	32
74	Molecular Packing Effects on the Optical Spectra and Triplet Dynamics in Oligofluorene Films. Journal of Physical Chemistry B, 2008, 112, 11605-11609.	1.2	19
75	Combined spectroscopic characterization of electron transfer at hybrid CuPcF16/GaAs semiconductor interfaces. Nanotechnology, 2008, 19, 424010.	1.3	5
76	Oligofluorene derivative in a host-guest system with a red-emitter: molecular packing effect on the host bimolecular recombination and guest ASE threshold reduction. Proceedings of SPIE, 2008, , .	0.8	2
77	Subpicosecond photoinduced Stark spectroscopy in fullerene-based devices. Physical Review B, 2007, 75, .	1.1	14
78	Kinetics of interfacial charges in hybrid GaAs/oligothiophene semiconducting heterojunctions. Applied Physics Letters, 2007, 91, 122113.	1.5	7
79	Elemental sensitivity in soft x-ray imaging with a laser-plasma source and a color center detector. Optics Letters, 2007, 32, 2593.	1.7	20
80	Early stages of interface formation of C60 on GaAs(100). Surface Science, 2007, 601, 4078-4081.	0.8	9
81	Photoinduced Transient Stark Spectroscopy in Organic Semiconductors: A Method for Charge Mobility Determination in the Picosecond Regime. Physical Review Letters, 2006, 96, 106601.	2.9	71
82	Two-step field-induced singlet dissociation in a fluorene trimer. Physical Review B, 2005, 71, .	1.1	22
83	Ultrafast field assisted exciton dissociation in oligofluorenes. Synthetic Metals, 2005, 152, 113-116.	2.1	1
84	Photophysics of charge transfer in a polyfluorene/violanthrone blend. Physical Review B, 2005, 71, .	1.1	28
85	Glass transition temperatures of polymer thin films monitored by Raman scattering. Journal of Physics Condensed Matter, 2004, 16, 721-728.	0.7	62
86	Model for Energy Transfer in Polymer/Dye Blends Based on Pointâ^'Surface Dipole Interaction. Chemistry of Materials, 2004, 16, 4705-4710.	3.2	36
87	Effect of aggregation on photocurrent generation in polyfluorene doped with violanthrone. Synthetic Metals, 2003, 137, 1471-1472.	2.1	12
88	Solar cells from thermally treated polymer/dye blends with good spectral coverage. Synthetic Metals, 2003, 139, 637-641.	2.1	28
89	Exciton migration in \hat{I}^2 -phase poly(9,9-dioctylfluorene). Physical Review B, 2003, 67, .	1.1	232
90	Energy transfer dynamics in polyfluorene-based polymer blends. Chemical Physics Letters, 2001, 339, 331-336.	1.2	135