
Ashutosh Kumar Mangalam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7145915/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Scientific Reports, 2016, 6, 28484.	1.6	660
2	Airway Memory CD4 + T Cells Mediate Protective Immunity against Emerging Respiratory Coronaviruses. Immunity, 2016, 44, 1379-1391.	6.6	468
3	Primer Premier: Program for Design of Degenerate Primers from a Protein Sequence. BioTechniques, 1998, 24, 318-319.	0.8	268
4	Recovery from the Middle East respiratory syndrome is associated with antibody and T cell responses. Science Immunology, 2017, 2, .	5.6	252
5	Human Gut-Derived Commensal Bacteria Suppress CNS Inflammatory and Demyelinating Disease. Cell Reports, 2017, 20, 1269-1277.	2.9	218
6	Suppression of Inflammatory Arthritis by Human Gutâ€Derived <i>Prevotella histicola</i> in Humanized Mice. Arthritis and Rheumatology, 2016, 68, 2878-2888.	2.9	178
7	Gut microbiome in multiple sclerosis: The players involved and the roles they play. Gut Microbes, 2017, 8, 607-615.	4.3	154
8	The "Gut Feeling― Breaking Down the Role of Gut Microbiome in Multiple Sclerosis. Neurotherapeutics, 2018, 15, 109-125.	2.1	117
9	IM-TORNADO: A Tool for Comparison of 16S Reads from Paired-End Libraries. PLoS ONE, 2014, 9, e114804.	1.1	110
10	HLA Class II Molecules Influence Susceptibility versus Protection in Inflammatory Diseases by Determining the Cytokine Profile. Journal of Immunology, 2013, 190, 513-519.	0.4	92
11	WASH Knockout T Cells Demonstrate Defective Receptor Trafficking, Proliferation, and Effector Function. Molecular and Cellular Biology, 2013, 33, 958-973.	1.1	84
12	Prevotella histicola, A Human Gut Commensal, Is as Potent as COPAXONE® in an Animal Model of Multiple Sclerosis. Frontiers in Immunology, 2019, 10, 462.	2.2	82
13	New humanized HLA–DR4–transgenic mice that mimic the sex bias of rheumatoid arthritis. Arthritis and Rheumatism, 2007, 56, 69-78.	6.7	79
14	Untargeted Plasma Metabolomics Identifies Endogenous Metabolite with Drug-like Properties in Chronic Animal Model of Multiple Sclerosis. Journal of Biological Chemistry, 2015, 290, 30697-30712.	1.6	76
15	MTHFD2 is a metabolic checkpoint controlling effector and regulatory TÂcell fate and function. Immunity, 2022, 55, 65-81.e9.	6.6	74
16	HLA Class II Transgenic Mice Mimic Human Inflammatory Diseases. Advances in Immunology, 2008, 97, 65-147.	1.1	70
17	Loss of AMPK exacerbates experimental autoimmune encephalomyelitis disease severity. Biochemical and Biophysical Research Communications, 2009, 386, 16-20.	1.0	64
18	Role of HLA class II genes in susceptibility and resistance to multiple sclerosis: Studies using HLA transgenic mice. Journal of Autoimmunity, 2011, 37, 122-128.	3.0	45

#	Article	IF	CITATIONS
19	Two discreet subsets of CD8 T cells modulate PLP91–110 induced experimental autoimmune encephalomyelitis in HLA-DR3 transgenic mice. Journal of Autoimmunity, 2012, 38, 344-353.	3.0	45
20	Prospective correlation between the patient microbiome with response to and development of immune-mediated adverse effects to immunotherapy in lung cancer. BMC Cancer, 2021, 21, 808.	1.1	43
21	Identification of T cell epitopes on human proteolipid protein and induction of experimental autoimmune encephalomyelitis in HLA class II-transgenic mice. European Journal of Immunology, 2004, 34, 280-290.	1.6	39
22	Isoflavone diet ameliorates experimental autoimmune encephalomyelitis through modulation of gut bacteria depleted in patients with multiple sclerosis. Science Advances, 2021, 7, .	4.7	36
23	HLA-DQ8 (DQB1*0302)-Restricted Th17 Cells Exacerbate Experimental Autoimmune Encephalomyelitis in HLA-DR3-Transgenic Mice. Journal of Immunology, 2009, 182, 5131-5139.	0.4	35
24	HLA DR and DQ interaction in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in HLA class II transgenic mice. Journal of Neuroimmunology, 2005, 169, 1-12.	1.1	34
25	Absence of IFN-Î ³ Increases Brain Pathology in Experimental Autoimmune Encephalomyelitis–Susceptible DRB1*0301.DQ8 HLA Transgenic Mice through Secretion of Proinflammatory Cytokine IL-17 and Induction of Pathogenic Monocytes/Microglia into the Central Nervous System. Journal of Immunology. 2014, 193, 4859-4870.	0.4	34
26	Beyond Metabolism: The Complex Interplay Between Dietary Phytoestrogens, Gut Bacteria, and Cells of Nervous and Immune Systems. Frontiers in Neurology, 2020, 11, 150.	1.1	34
27	Neuropilin-1 modulates interferon-γ-stimulated signaling in brain microvascular endothelial cells. Journal of Cell Science, 2016, 129, 3911-3921.	1.2	32
28	Endocannabinoid Receptor-1 and Sympathetic Nervous System Mediate the Beneficial Metabolic Effects of Gastric Bypass. Cell Reports, 2020, 33, 108270.	2.9	31
29	AMP-Activated Protein Kinase Suppresses Autoimmune Central Nervous System Disease by Regulating M1-Type Macrophage–Th17 Axis. Journal of Immunology, 2016, 197, 747-760.	0.4	25
30	Blood-based untargeted metabolomics in relapsing-remitting multiple sclerosis revealed the testable therapeutic target. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	25
31	HLA-DQ6 (DQB1*0601)-Restricted T Cells Protect against Experimental Autoimmune Encephalomyelitis in HLA-DR3.DQ6 Double-Transgenic Mice by Generating Anti-Inflammatory IFN-γ. Journal of Immunology, 2008, 180, 7747-7756.	0.4	24
32	Microbiota Analysis Using Two-step PCR and Next-generation 16S rRNA Gene Sequencing. Journal of Visualized Experiments, 2019, , .	0.2	24
33	Intestinal Dysbiosis in, and Enteral Bacterial Therapies for, Systemic Autoimmune Diseases. Frontiers in Immunology, 2020, 11, 573079.	2.2	23
34	Human Commensal Prevotella histicola Ameliorates Disease as Effectively as Interferon-Beta in the Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 2020, 11, 578648.	2.2	22
35	Role of MHC class II expressing CD4+ T cells in proteolipid protein91–110-induced EAE in HLA-DR3 transgenic mice. European Journal of Immunology, 2006, 36, 3356-3370.	1.6	20
36	Effect of bacterial contamination in bile on pancreatic cancer cell survival. Surgery, 2021, 169, 617-622.	1.0	18

#	Article	IF	CITATIONS
37	Multiple sclerosis patients have an altered gut mycobiome and increased fungal to bacterial richness. PLoS ONE, 2022, 17, e0264556.	1.1	18
38	Scoring disease in an animal model of multiple sclerosis using a novel infrared-based automated activity-monitoring system. Scientific Reports, 2019, 9, 19194.	1.6	16
39	Sepsis impedes EAE disease development and diminishes autoantigen-specific naive CD4 T cells. ELife, 2020, 9, .	2.8	16
40	Bugs in the system: bringing the human microbiome to bear in cancer immunotherapy. Gut Microbes, 2019, 10, 109-112.	4.3	15
41	Microbial monotherapy with <i>Prevotella histicola</i> for patients with multiple sclerosis. Expert Review of Neurotherapeutics, 2019, 19, 45-53.	1.4	15
42	The emerging world of microbiome in autoimmune disorders: Opportunities and challenges. Indian Journal of Rheumatology, 2021, 16, 57.	0.2	14
43	Mechanism of action of disease modifying anti-rheumatic agent, gold sodium thiomalate (GSTM). International Immunopharmacology, 2001, 1, 1165-1172.	1.7	12
44	The Gut Microbiome and Metabolome in Multiple Sclerosis. , 2019, , 333-340.		11
45	Gold sodium thiomalate (GSTM) inhibits lipopolysaccharide stimulated tumor necrosis factor-α through ceramide pathway. Cellular Immunology, 2002, 219, 1-10.	1.4	9
46	A New Humanized HLA Transgenic Mouse Model of Multiple Sclerosis Expressing Class II on Mouse CD4 T Cells. Annals of the New York Academy of Sciences, 2007, 1103, 112-117.	1.8	9
47	HLA Class II Polymorphisms Modulate Gut Microbiota and Experimental Autoimmune Encephalomyelitis Phenotype. ImmunoHorizons, 2021, 5, 627-646.	0.8	9
48	Administration of Human Derived Upper gut Commensal Prevotella histicola delays the onset of type 1 diabetes in NOD mice. BMC Microbiology, 2022, 22, 8.	1.3	9
49	Editorial: The Role of the Gut Microbiota in Health and Inflammatory Diseases. Frontiers in Immunology, 2020, 11, 565305.	2.2	8
50	Autoimmunity in HLA-DQ8 transgenic mice expressing granulocyte/macrophage-colony stimulating factor in the beta cells of islets of langerhans. Autoimmunity, 2007, 40, 169-179.	1.2	7
51	Secreted osteopontin from CD4+ TÂcells limits acute graft-versus-host disease. Cell Reports, 2021, 37, 110170.	2.9	7
52	Utility of CD64 expression on neutrophils as a marker to differentiate infectious versus noninfectious disease flares in autoimmune disorders. Indian Journal of Rheumatology, 2019, 14, 9.	0.2	6
53	Toll-like receptor 4 and myeloid differentiation factor 88 are required for gastric bypass-induced metabolic effects. Surgery for Obesity and Related Diseases, 2021, 17, 1996-2006.	1.0	5
54	Delineation of the minimal encephalitogenic epitope of proteolipid protein peptide91–110 and critical residues required for induction of EAE in HLA-DR3 transgenic mice. Journal of Neuroimmunology, 2005, 161, 40-48.	1.1	4

#	Article	IF	CITATIONS
55	Distinct local immunogenic stimuli dictate differential requirements for CD4+and CD8+T cell subsets in the pathogenesis of spontaneous autoimmune diabetes. Autoimmunity, 2007, 40, 489-496.	1.2	4
56	Drugs, bugs, and MS. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e524.	3.1	4
57	Pathophysiology of Experimental Autoimmune Encephalomyelitis. , 2016, , 249-280.		3
58	Autoimmunity Increases Susceptibility to and Mortality from Sepsis. ImmunoHorizons, 2021, 5, 844-854.	0.8	3
59	The Effects of Benoxacor on the Liver and Gut Microbiome of C57BL/6 Mice. Toxicological Sciences, 2021, , .	1.4	3
60	Genetic Predisposition to Autoimmune Diseases Conferred by the Major Histocompatibility Complex. , 2014, , 365-380.		2
61	Prospective correlation between the patient microbiome with response to and development of immune-mediated adverse effects to immunotherapy in lung cancer Journal of Clinical Oncology, 2021, 39, e21024-e21024.	0.8	2
62	Fungal microbiome and multiple sclerosis: The not-so-new kid on the block. EBioMedicine, 2021, 72, 103621.	2.7	2
63	Role of microbiome and metabolome in the pathobiology of MS. Clinical Immunology, 2022, 235, 108934.	1.4	1
64	Delineating the Roles of CD4+ and CD8+ T Cell Subsets in the Pathogenesis of Spontaneous Autoimmune Diabetes Using HLA-DQ8 Transgenic Mice. Clinical Immunology, 2007, 123, S71.	1.4	0
65	F.32. HLA-DQ8 (DQB1*0302) Molecule Modulate PLP91-110 Induced EAE in HLA-DR3 (DRB1*0301)/DQ8 Double Transgenic Mice through Pro-inflammatory Cytokine IL-17. Clinical Immunology, 2008, 127, S53.	1.4	Ο
66	Reply. Arthritis and Rheumatology, 2018, 70, 321-322.	2.9	0
67	831 CB1 MEDIATES THE ENERGY EFFECTS OF GASTRIC BYPASS THROUGH THE SPLANCHNIC SYMPATHETIC NERVE. Gastroenterology, 2020, 158, S-164-S-165.	0.6	Ο
68	Abstract B24: The microbiome in lung cancer under immunotherapy: Significant compositional differences associated with treatment response and AEs. , 2020, , .		0
69	Modulation of Immune response by Ultra-violet light in HLA class-II transgenic mice. , 2014, 1, .		Ο
70	Role of the gut microbiome in multiple sclerosis: From etiology to therapeutics. International Review of Neurobiology, 2022, , .	0.9	0