
Dongdong Niu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7145840/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exonic Circular RNAs Are Involved in <i>Arabidopsis</i> Immune Response Against Bacterial and Fungal Pathogens and Function Synergistically with Corresponding Linear RNAs. Phytopathology, 2022, 112, 608-619.	1.1	4
2	Induced Systemic Resistance for Improving Plant Immunity by Beneficial Microbes. Plants, 2022, 11, 386.	1.6	115
3	Identification of citrus immune regulators involved in defence against Huanglongbing using a new functional screening system. Plant Biotechnology Journal, 2021, 19, 757-766.	4.1	14
4	Sprayâ€induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake. Plant Biotechnology Journal, 2021, 19, 1756-1768.	4.1	126
5	Message in a Bubble: Shuttling Small RNAs and Proteins Between Cells and Interacting Organisms Using Extracellular Vesicles. Annual Review of Plant Biology, 2021, 72, 497-524.	8.6	85
6	RNAs — a new frontier in crop protection. Current Opinion in Biotechnology, 2021, 70, 204-212.	3.3	45
7	AtMC1 Associates With LSM4 to Regulate Plant Immunity Through Modulating Pre-mRNA Splicing. Molecular Plant-Microbe Interactions, 2021, 34, 1423-1432.	1.4	11
8	Genome Sequence of the <i>Agrobacterium salinitolerans</i> DG3-1 Isolated from Cotton Roots. Molecular Plant-Microbe Interactions, 2021, 34, 1458-1460.	1.4	0
9	A comparative proteomic approach to identify defence-related proteins between resistant and susceptible rice cultivars challenged with the fungal pathogen Rhizoctonia solani. Plant Growth Regulation, 2020, 90, 73-88.	1.8	12
10	Expression of rice siR109944 in Arabidopsis affects plant immunity to multiple fungal pathogens. Plant Signaling and Behavior, 2020, 15, 1744347.	1.2	1
11	Rice siR109944 suppresses plant immunity to sheath blight and impacts multiple agronomic traits by affecting auxin homeostasis. Plant Journal, 2020, 102, 948-964.	2.8	36
12	<i>Bacillus cereus</i> AR156 triggers induced systemic resistance against <i>Pseudomonas syringae</i> pv. <i>tomato</i> DC3000 by suppressing miR472 and activating CNLsâ€mediated basal immunity in <i>Arabidopsis</i> . Molecular Plant Pathology, 2020, 21, 854-870.	2.0	37
13	Function of miR825 and miR825* as Negative Regulators in Bacillus cereus AR156-elicited Systemic Resistance to Botrytis cinerea in Arabidopsis thaliana. International Journal of Molecular Sciences, 2019, 20, 5032.	1.8	26
14	<i>Magnaporthe oryzae</i> Induces the Expression of a MicroRNA to Suppress the Immune Response in Rice. Plant Physiology, 2018, 177, 352-368.	2.3	120
15	<i>Bacillus cereus</i> AR156 Activates Defense Responses to <i>Pseudomonas syringae</i> pv. <i>tomato</i> in <i>Arabidopsis thaliana</i> Similarly to flg22. Molecular Plant-Microbe Interactions, 2018, 31, 311-322.	1.4	30
16	Deep Sequencing Uncovers Rice Long siRNAs and Its Involvement in Immunity Against <i>Rhizoctonia solani</i> . Phytopathology, 2018, 108, 60-69.	1.1	15
17	Osaâ€miR164a targets <i>Os<scp>NAC</scp>60</i> and negatively regulates rice immunity against the blast fungus <i>Magnaporthe oryzae</i> . Plant Journal, 2018, 95, 584-597.	2.8	103
18	Induced Systemic Resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-Dependent Signaling Pathway and Activates PAMP-Triggered Immunity in Arabidopsis. Frontiers in Plant Science, 2017, 8, 238.	1.7	164

Dongdong Niu

#	Article	IF	CITATIONS
19	miRNA863-3p sequentially targets negative immune regulator ARLPKs and positive regulator SERRATE upon bacterial infection. Nature Communications, 2016, 7, 11324.	5.8	66
20	<i>Bacillus cereus</i> AR156 primes induced systemic resistance by suppressing miR825/825* and activating defenseâ€related genes in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2016, 58, 426-439.	4.1	53
21	Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through a NPR1 -and SA-dependent signaling pathway. Biochemical and Biophysical Research Communications, 2016, 469, 120-125.	1.0	67
22	Profiling of Small RNAs Involved in Plant–Pathogen Interactions. Methods in Molecular Biology, 2015, 1287, 61-79.	0.4	20
23	ARGONAUTE PIWI domain and microRNA duplex structure regulate small RNA sorting in Arabidopsis. Nature Communications, 2014, 5, 5468.	5.8	69
24	Genome-wide analysis of plant nat-siRNAs reveals insights into their distribution, biogenesis and function. Genome Biology, 2012, 13, R20.	13.9	120
25	The Plant Growth–Promoting Rhizobacterium <i>Bacillus cereus</i> AR156 Induces Systemic Resistance in <i>Arabidopsis thaliana</i> by Simultaneously Activating Salicylate- and Jasmonate/Ethylene-Dependent Signaling Pathways. Molecular Plant-Microbe Interactions, 2011, 24, 533-542.	1.4	378