Zaiyuan Le

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7145677/publications.pdf

Version: 2024-02-01

394286 552653 1,978 27 19 26 h-index citations g-index papers 27 27 27 3405 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Dealloying Synthesis of Silicon Nanotubes for Highâ€Performance Lithium Ion Batteries. ChemPhysChem, 2022, , .	1.0	2
2	Dealloying Synthesis of Silicon Nanotubes for Highâ€Performance Lithium Ion Batteries. ChemPhysChem, 2022, 23, e202200233.	1.0	10
3	Front Cover: Dealloying Synthesis of Silicon Nanotubes for Highâ€Performance Lithium Ion Batteries (ChemPhysChem 9/2022). ChemPhysChem, 2022, 23, .	1.0	O
4	Highly Dispersed Antimony–Bismuth Alloy Encapsulated in Carbon Nanofibers for Ultrastable K-Ion Batteries. Journal of Physical Chemistry Letters, 2022, 13, 6587-6596.	2.1	7
5	Perovskite-type CaMnO3 anode material for highly efficient and stable lithium ion storage. Journal of Colloid and Interface Science, 2021, 584, 698-705.	5.0	21
6	Nanosheets assembled layered MoS2/MXene as high performance anode materials for potassium ion batteries. Journal of Power Sources, 2020, 449, 227481.	4.0	125
7	Emerging Potassiumâ€ion Hybrid Capacitors. ChemSusChem, 2020, 13, 5837-5862.	3.6	65
8	Anchoring anions with metal–organic framework-functionalized separators for advanced lithium batteries. Nanoscale Horizons, 2019, 4, 705-711.	4.1	71
9	Microwave-assisted synthesis of 1T MoS2/Cu nanowires with enhanced capacity and stability as anode for LIBs. Chemical Engineering Journal, 2019, 374, 429-436.	6.6	42
10	Well-dispersed phosphorus nanocrystals within carbon via high-energy mechanical milling for high performance lithium storage. Nano Energy, 2019, 59, 464-471.	8.2	70
11	Aerosol-Assisted Synthesis of Spherical Sb/C Composites as Advanced Anodes for Lithium Ion and Sodium Ion Batteries. ACS Applied Energy Materials, 2018, 1, 6381-6387.	2.5	32
12	Graphene Caging Silicon Particles for Highâ€Performance Lithiumâ€lon Batteries. Small, 2018, 14, e1800635.	5.2	146
13	Graphene oxide enhanced amine-functionalized titanium metal organic framework for visible-light-driven photocatalytic oxidation of gaseous pollutants. Applied Catalysis B: Environmental, 2018, 236, 501-508.	10.8	116
14	Assembly of mesoporous SnO2 spheres and carbon nanotubes network as a high-performance anode for lithium-ion batteries. Journal of Materials Science, 2018, 53, 15621-15630.	1.7	17
15	Iron-decorated nitrogen-rich carbons as efficient oxygen reduction electrocatalysts for Zn–air batteries. Nanoscale, 2018, 10, 16996-17001.	2.8	25
16	Pseudocapacitive Sodium Storage in Mesoporous Single-Crystal-like TiO ₂ –Graphene Nanocomposite Enables High-Performance Sodium-Ion Capacitors. ACS Nano, 2017, 11, 2952-2960.	7.3	542
17	Mesoporous single-crystal-like TiO2 mesocages threaded with carbon nanotubes for high-performance electrochemical energy storage. Nano Energy, 2017, 35, 44-51.	8.2	7 5
18	Regenerative Polysulfide-Scavenging Layers Enabling Lithium–Sulfur Batteries with High Energy Density and Prolonged Cycling Life. ACS Nano, 2017, 11, 2697-2705.	7.3	132

Zaiyuan Le

#	Article	IF	CITATION
19	Prussian Blue Analogue with Fast Kinetics Through Electronic Coupling for Sodium Ion Batteries. ACS Applied Materials & Early 10, 2017, 9, 20306-20312.	4.0	96
20	Post Iron Decoration of Mesoporous Nitrogenâ€Doped Carbon Spheres for Efficient Electrochemical Oxygen Reduction. Advanced Energy Materials, 2017, 7, 1701154.	10.2	65
21	Robust iron nanoparticles with graphitic shells for high-performance Ni-Fe battery. Nano Energy, 2016, 30, 217-224.	8.2	76
22	Encapsulation of SnO ₂ nanocrystals into hierarchically porous carbon by melt infiltration for high-performance lithium storage. Journal of Materials Chemistry A, 2016, 4, 18706-18710.	5.2	42
23	Mesoporous crystalline–amorphous oxide nanocomposite network for high-performance lithium storage. Chemical Communications, 2015, 51, 12056-12059.	2.2	7
24	Hierarchical Nanostructured WO ₃ with Biomimetic Proton Channels and Mixed Ionic-Electronic Conductivity for Electrochemical Energy Storage. Nano Letters, 2015, 15, 6802-6808.	4.5	157
25	Better lithium-ion storage materials made through hierarchical assemblies of active nanorods and nanocrystals. Journal of Materials Chemistry A, 2014, 2, 17536-17544.	5.2	12
26	EMIHSO4-Based Polymer Electrolytes and Their Applications in Solid Electrochemical Capacitors. ECS Transactions, 2013, 50, 411-417.	0.3	6
27	EMIHSO4-Based Polymer Ionic Liquid Electrolyte for Electrochemical Capacitors. Electrochemical and Solid-State Letters, 2011, 15, A19-A22.	2.2	19