Michael E Hasselmo

List of Publications by Citations

 $\textbf{Source:} \ https://exaly.com/author-pdf/7145621/michael-e-hasselmo-publications-by-citations.pdf$

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

270 20,047 76 137 g-index

354 22,874 5.8 7.3 L-index

ext. papers ext. citations

#	Paper	IF	Citations
270	The role of acetylcholine in learning and memory. Current Opinion in Neurobiology, 2006, 16, 710-5	7.6	975
269	Neuromodulation: acetylcholine and memory consolidation. <i>Trends in Cognitive Sciences</i> , 1999 , 3, 351-3	35 9 4	700
268	Graded persistent activity in entorhinal cortex neurons. <i>Nature</i> , 2002 , 420, 173-8	50.4	620
267	A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. <i>Neural Computation</i> , 2002 , 14, 793-817	2.9	573
266	Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. <i>Brain Research Reviews</i> , 2005 , 48, 98-111		557
265	The role of expression and identity in the face-selective responses of neurons in the temporal visual cortex of the monkey. <i>Behavioural Brain Research</i> , 1989 , 32, 203-18	3.4	497
264	Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology, 2011 , 36, 52-73	8.7	489
263	Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. <i>Archives of General Psychiatry</i> , 1999 , 56, 1001-5		474
262	Neuromodulation and cortical function: modeling the physiological basis of behavior. <i>Behavioural Brain Research</i> , 1995 , 67, 1-27	3.4	433
261	The hippocampus as an associator of discontiguous events. <i>Trends in Neurosciences</i> , 1998 , 21, 317-23	13.3	405
260	High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. <i>Progress in Brain Research</i> , 2004 , 145, 207-31	2.9	378
259	Acetylcholine and memory. <i>Trends in Neurosciences</i> , 1993 , 16, 218-22	13.3	342
258	What is the function of hippocampal theta rhythm?Linking behavioral data to phasic properties of field potential and unit recording data. <i>Hippocampus</i> , 2005 , 15, 936-49	3.5	326
257	Free recall and recognition in a network model of the hippocampus: simulating effects of scopolamine on human memory function. <i>Behavioural Brain Research</i> , 1997 , 89, 1-34	3.4	314
256	Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning. <i>Science</i> , 2011 , 332, 595-9	33.3	303
255	Hippocampal "time cells": time versus path integration. <i>Neuron</i> , 2013 , 78, 1090-101	13.9	302
254	Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. <i>Science</i> , 2007 , 315, 1719-22	33.3	300

(2010-2003)

253	Stimulation in hippocampal region CA1 in behaving rats yields long-term potentiation when delivered to the peak of theta and long-term depression when delivered to the trough. <i>Journal of Neuroscience</i> , 2003 , 23, 11725-31	6.6	270
252	Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. <i>Journal of Neurophysiology</i> , 2000 , 83, 2562-79	3.2	258
251	Encoding and retrieval of episodic memories: role of cholinergic and GABAergic modulation in the hippocampus. <i>Hippocampus</i> , 1996 , 6, 693-708	3.5	256
250	GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. <i>Journal of Neurophysiology</i> , 1997 , 78, 393-408	3.2	251
249	Grid cell firing may arise from interference of theta frequency membrane potential oscillations in single neurons. <i>Hippocampus</i> , 2007 , 17, 1252-71	3.5	230
248	Mechanisms underlying working memory for novel information. <i>Trends in Cognitive Sciences</i> , 2006 , 10, 487-93	14	230
247	Medial prefrontal cortex cells show dynamic modulation with the hippocampal theta rhythm dependent on behavior. <i>Hippocampus</i> , 2005 , 15, 739-49	3.5	228
246	Mechanism of graded persistent cellular activity of entorhinal cortex layer v neurons. <i>Neuron</i> , 2006 , 49, 735-46	13.9	219
245	Hippocampal mechanisms for the context-dependent retrieval of episodes. <i>Neural Networks</i> , 2005 , 18, 1172-90	9.1	217
244	The temporal context model in spatial navigation and relational learning: toward a common explanation of medial temporal lobe function across domains. <i>Psychological Review</i> , 2005 , 112, 75-116	6.3	213
243	Medial temporal and prefrontal contributions to working memory tasks with novel and familiar stimuli. <i>Hippocampus</i> , 2001 , 11, 337-46	3.5	208
242	Plaque-induced neurite abnormalities: implications for disruption of neural networks in Alzheimer's disease. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1999 , 96, 5274-	.g ^{1.5}	194
241	Noradrenergic suppression of synaptic transmission may influence cortical signal-to-noise ratio. Journal of Neurophysiology, 1997 , 77, 3326-39	3.2	189
240	Neuromodulation, theta rhythm and rat spatial navigation. <i>Neural Networks</i> , 2002 , 15, 689-707	9.1	163
239	The effect of learning on the face selective responses of neurons in the cortex in the superior temporal sulcus of the monkey. <i>Experimental Brain Research</i> , 1989 , 76, 153-64	2.3	163
238	Grid cell mechanisms and function: contributions of entorhinal persistent spiking and phase resetting. <i>Hippocampus</i> , 2008 , 18, 1213-29	3.5	162
237	Object-centered encoding by face-selective neurons in the cortex in the superior temporal sulcus of the monkey. <i>Experimental Brain Research</i> , 1989 , 75, 417-29	2.3	160
236	Working Memory Performance Correlates with Prefrontal-Hippocampal Theta Interactions but not with Prefrontal Neuron Firing Rates. <i>Frontiers in Integrative Neuroscience</i> , 2010 , 4, 2	3.2	157

235	Persistence of parahippocampal representation in the absence of stimulus input enhances long-term encoding: a functional magnetic resonance imaging study of subsequent memory after a delayed match-to-sample task. <i>Journal of Neuroscience</i> , 2004 , 24, 11088-97	6.6	157
234	During Running in Place, Grid Cells Integrate Elapsed Time and Distance Run. <i>Neuron</i> , 2015 , 88, 578-89	13.9	143
233	Theta rhythm and the encoding and retrieval of space and time. <i>NeuroImage</i> , 2014 , 85 Pt 2, 656-66	7.9	140
232	Cholinergic modulation of cortical function. <i>Journal of Molecular Neuroscience</i> , 2006 , 30, 133-5	3.3	138
231	Gradual translocation of spatial correlates of neuronal firing in the hippocampus toward prospective reward locations. <i>Neuron</i> , 2006 , 51, 639-50	13.9	124
230	DC-shifts in amplitude in-field generated by an oscillatory interference model of grid cell firing. <i>Frontiers in Systems Neuroscience</i> , 2014 , 8, 1	3.5	122
229	Neuromodulation by glutamate and acetylcholine can change circuit dynamics by regulating the relative influence of afferent input and excitatory feedback. <i>Molecular Neurobiology</i> , 2007 , 36, 184-200	6.2	121
228	Phase precession and variable spatial scaling in a periodic attractor map model of medial entorhinal grid cells with realistic after-spike dynamics. <i>Hippocampus</i> , 2012 , 22, 772-89	3.5	116
227	Scopolamine reduces persistent activity related to long-term encoding in the parahippocampal gyrus during delayed matching in humans. <i>Journal of Neuroscience</i> , 2005 , 25, 9112-23	6.6	113
226	Simulations of the role of the muscarinic-activated calcium-sensitive nonspecific cation current INCM in entorhinal neuronal activity during delayed matching tasks. <i>Journal of Neuroscience</i> , 2002 , 22, 1081-97	6.6	112
225	A unified mathematical framework for coding time, space, and sequences in the hippocampal region. <i>Journal of Neuroscience</i> , 2014 , 34, 4692-707	6.6	111
224	Blockade of central cholinergic receptors impairs new learning and increases proactive interference in a word paired-associate memory task. <i>Behavioral Neuroscience</i> , 2004 , 118, 223-36	2.1	110
223	Ionic mechanisms in the generation of subthreshold oscillations and action potential clustering in entorhinal layer II stellate neurons. <i>Hippocampus</i> , 2004 , 14, 368-84	3.5	109
222	Acetylcholine and Learning in a Cortical Associative Memory. <i>Neural Computation</i> , 1993 , 5, 32-44	2.9	109
221	Hippocampal CA1 spiking during encoding and retrieval: relation to theta phase. <i>Neurobiology of Learning and Memory</i> , 2007 , 87, 9-20	3.1	108
220	A model of episodic memory: mental time travel along encoded trajectories using grid cells. <i>Neurobiology of Learning and Memory</i> , 2009 , 92, 559-73	3.1	106
219	A goal-directed spatial navigation model using forward trajectory planning based on grid cells. <i>European Journal of Neuroscience</i> , 2012 , 35, 916-31	3.5	105
218	Modeling goal-directed spatial navigation in the rat based on physiological data from the hippocampal formation. <i>Neural Networks</i> , 2003 , 16, 577-84	9.1	100

(2011-2013)

217	Hippocampus and retrosplenial cortex combine path integration signals for successful navigation. Journal of Neuroscience, 2013 , 33, 19304-13	6.6	97	
216	Multiple Running Speed Signals in Medial Entorhinal Cortex. <i>Neuron</i> , 2016 , 91, 666-79	13.9	94	
215	Knock-out of HCN1 subunit flattens dorsal-ventral frequency gradient of medial entorhinal neurons in adult mice. <i>Journal of Neuroscience</i> , 2009 , 29, 7625-30	6.6	94	
214	Time constants of h current in layer ii stellate cells differ along the dorsal to ventral axis of medial entorhinal cortex. <i>Journal of Neuroscience</i> , 2008 , 28, 9414-25	6.6	94	
213	Switching between "On" and "Off" states of persistent activity in lateral entorhinal layer III neurons. <i>Hippocampus</i> , 2007 , 17, 257-63	3.5	94	
212	Neural models of memory. <i>Current Opinion in Neurobiology</i> , 1999 , 9, 184-8	7.6	93	
211	Which way was I going? Contextual retrieval supports the disambiguation of well learned overlapping navigational routes. <i>Journal of Neuroscience</i> , 2010 , 30, 7414-22	6.6	91	
210	Cholinergic modulation of cognitive processing: insights drawn from computational models. <i>Frontiers in Behavioral Neuroscience</i> , 2012 , 6, 24	3.5	90	
209	Encoding and retrieval in the CA3 region of the hippocampus: a model of theta-phase separation. Journal of Neurophysiology, 2005 , 94, 70-82	3.2	90	
208	Coupled noisy spiking neurons as velocity-controlled oscillators in a model of grid cell spatial firing. <i>Journal of Neuroscience</i> , 2010 , 30, 13850-60	6.6	88	
207	Runaway synaptic modification in models of cortex: Implications for Alzheimer's disease. <i>Neural Networks</i> , 1994 , 7, 13-40	9.1	88	
206	Modulation of inhibition in a model of olfactory bulb reduces overlap in the neural representation of olfactory stimuli. <i>Behavioural Brain Research</i> , 1997 , 84, 117-27	3.4	87	
205	Spatial representations of hippocampal CA1 neurons are modulated by behavioral context in a hippocampus-dependent memory task. <i>Journal of Neuroscience</i> , 2007 , 27, 2416-23	6.6	86	
204	The Same Hippocampal CA1 Population Simultaneously Codes Temporal Information over Multiple Timescales. <i>Current Biology</i> , 2018 , 28, 1499-1508.e4	6.3	84	
203	Cholinergic modulation of the resonance properties of stellate cells in layer II of medial entorhinal cortex. <i>Journal of Neurophysiology</i> , 2010 , 104, 258-70	3.2	82	
202	Cholinergic blockade reduces theta-gamma phase amplitude coupling and speed modulation of theta frequency consistent with behavioral effects on encoding. <i>Journal of Neuroscience</i> , 2013 , 33, 196	35 : 46	80	
201	Modeling the role of working memory and episodic memory in behavioral tasks. <i>Hippocampus</i> , 2008 , 18, 193-209	3.5	80	
200	Role of ICAN in rate, spike time, and theta phase coding by persistent spiking neurons of the medial entorhinal cortex. <i>BMC Neuroscience</i> , 2011 , 12,	3.2	78	

199	Network dynamics of encoding and retrieval of behavioural spike sequences during theta and ripples in a CA1 model of the hippocampus. <i>BMC Neuroscience</i> , 2010 , 11,	3.2	78
198	mGluR-dependent persistent firing in entorhinal cortex layer III neurons. <i>European Journal of Neuroscience</i> , 2008 , 28, 1116-26	3.5	78
197	Cholinergic deafferentation of the entorhinal cortex in rats impairs encoding of novel but not familiar stimuli in a delayed nonmatch-to-sample task. <i>Journal of Neuroscience</i> , 2005 , 25, 10273-81	6.6	78
196	Selective loss of cholinergic neurons projecting to the olfactory system increases perceptual generalization between similar, but not dissimilar, odorants <i>Behavioral Neuroscience</i> , 2001 , 115, 826-8	33 ^{3.1}	76
195	Muscarinic cholinergic neuromodulation reduces proactive interference between stored odor memories during associative learning in rats <i>Behavioral Neuroscience</i> , 2000 , 114, 32-41	2.1	76
194	Bat and rat neurons differ in theta-frequency resonance despite similar coding of space. <i>Science</i> , 2013 , 340, 363-7	33.3	75
193	Persistent firing supported by an intrinsic cellular mechanism in a component of the head direction system. <i>Journal of Neuroscience</i> , 2009 , 29, 4945-52	6.6	74
192	Analysis of theta power in hippocampal EEG during bar pressing and running behavior in rats during distinct behavioral contexts. <i>Hippocampus</i> , 2004 , 14, 662-74	3.5	70
191	Segregation of cortical head direction cell assemblies on alternating Eycles. <i>Nature Neuroscience</i> , 2013 , 16, 739-48	25.5	69
190	Differences in time course of ACh and GABA modulation of excitatory synaptic potentials in slices of rat hippocampus. <i>Journal of Neurophysiology</i> , 2001 , 86, 1792-802	3.2	69
189	Cholinergic agonist carbachol enables associative long-term potentiation in piriform cortex slices. Journal of Neurophysiology, 1998 , 80, 2467-74	3.2	69
188	Changes in GABAB modulation during a theta cycle may be analogous to the fall of temperature during annealing. <i>Neural Computation</i> , 1998 , 10, 869-82	2.9	68
187	There and Back Again: Hippocampus and Retrosplenial Cortex Track Homing Distance during Human Path Integration. <i>Journal of Neuroscience</i> , 2015 , 35, 15442-52	6.6	66
186	The role of hippocampal regions CA3 and CA1 in matching entorhinal input with retrieval of associations between objects and context: theoretical comment on Lee et al. (2005). <i>Behavioral Neuroscience</i> , 2005 , 119, 342-5	2.1	66
185	Behavioral responses to aliphatic aldehydes can be predicted from known electrophysiological responses of mitral cells in the olfactory bulb. <i>Physiology and Behavior</i> , 1999 , 66, 497-502	3.5	66
184	A model of prefrontal cortical mechanisms for goal-directed behavior. <i>Journal of Cognitive Neuroscience</i> , 2005 , 17, 1115-29	3.1	63
183	Specific Basal Forebrain-Cortical Cholinergic Circuits Coordinate Cognitive Operations. <i>Journal of Neuroscience</i> , 2018 , 38, 9446-9458	6.6	63
182	Reconciling the different faces of hippocampal theta: The role of theta oscillations in cognitive, emotional and innate behaviors. <i>Neuroscience and Biobehavioral Reviews</i> , 2018 , 85, 65-80	9	62

(2006-2003)

181	Scopolamine impairs human recognition memory: data and modeling. <i>Behavioral Neuroscience</i> , 2003 , 117, 526-39	2.1	62
180	Computation by oscillations: implications of experimental data for theoretical models of grid cells. <i>Hippocampus</i> , 2008 , 18, 1186-99	3.5	60
179	Size of CA1-evoked synaptic potentials is related to theta rhythm phase in rat hippocampus. Journal of Neurophysiology, 2000 , 83, 2138-44	3.2	59
178	A computational model of cholinergic disruption of septohippocampal activity in classical eyeblink conditioning. <i>Neurobiology of Learning and Memory</i> , 1996 , 66, 51-66	3.1	56
177	GABAergic contributions to gating, timing, and phase precession of hippocampal neuronal activity during theta oscillations. <i>Hippocampus</i> , 2012 , 22, 1597-621	3.5	55
176	The responses of neurons in the cortex in the superior temporal sulcus of the monkey to band-pass spatial frequency filtered faces. <i>Vision Research</i> , 1987 , 27, 311-26	2.1	55
175	Selective suppression of intrinsic but not afferent fiber synaptic transmission by baclofen in the piriform (olfactory) cortex. <i>Brain Research</i> , 1994 , 659, 75-81	3.7	54
174	Greater working memory load results in greater medial temporal activity at retrieval. <i>Cerebral Cortex</i> , 2009 , 19, 2561-71	5.1	53
173	Suppression of synaptic transmission may allow combination of associative feedback and self-organizing feedforward connections in the neocortex. <i>Behavioural Brain Research</i> , 1996 , 79, 153-61	3.4	53
172	Possible role of acetylcholine in regulating spatial novelty effects on theta rhythm and grid cells. <i>Frontiers in Neural Circuits</i> , 2012 , 6, 5	3.5	52
171	Egocentric boundary vector tuning of the retrosplenial cortex. Science Advances, 2020, 6, eaaz2322	14.3	51
170	Phase coding by grid cells in unconstrained environments: two-dimensional phase precession. <i>European Journal of Neuroscience</i> , 2013 , 38, 2526-41	3.5	51
169	Contribution of the cholinergic basal forebrain to proactive interference from stored odor memories during associative learning in rats <i>Behavioral Neuroscience</i> , 2001 , 115, 314-327	2.1	51
168	Modulation of inhibitory synaptic potentials in the piriform cortex. <i>Journal of Neurophysiology</i> , 1999 , 81, 2103-18	3.2	51
167	Evaluation of the oscillatory interference model of grid cell firing through analysis and measured period variance of some biological oscillators. <i>PLoS Computational Biology</i> , 2009 , 5, e1000573	5	49
166	Linking cellular mechanisms to behavior: entorhinal persistent spiking and membrane potential oscillations may underlie path integration, grid cell firing, and episodic memory. <i>Neural Plasticity</i> , 2008 , 2008, 658323	3.3	49
165	Computational modeling of entorhinal cortex. <i>Annals of the New York Academy of Sciences</i> , 2000 , 911, 418-46	6.5	48
164	Muscarinic suppression in stratum radiatum of CA1 shows dependence on presynaptic M1 receptors and is not dependent on effects at GABA(B) receptors. <i>Neurobiology of Learning and Memory</i> , 2006 , 85, 153-63	3.1	46

163	A biologically inspired hierarchical goal directed navigation model. <i>Journal of Physiology (Paris)</i> , 2014 , 108, 28-37		44
162	A model combining oscillations and attractor dynamics for generation of grid cell firing. <i>Frontiers in Neural Circuits</i> , 2012 , 6, 30	3.5	44
161	Electrical stimulation of the horizontal limb of the diagonal band of broca modulates population EPSPs in piriform cortex. <i>Journal of Neurophysiology</i> , 1999 , 81, 2737-42	3.2	44
160	Head direction is coded more strongly than movement direction in a population of entorhinal neurons. <i>Brain Research</i> , 2015 , 1621, 355-67	3.7	42
159	Hippocampal Place Fields Maintain a Coherent and Flexible Map across Long Timescales. <i>Current Biology</i> , 2018 , 28, 3578-3588.e6	6.3	42
158	Modulation of Hippocampal Circuits by Muscarinic and Nicotinic Receptors. <i>Frontiers in Neural Circuits</i> , 2017 , 11, 102	3.5	41
157	Frequency of subthreshold oscillations at different membrane potential voltages in neurons at different anatomical positions on the dorsoventral axis in the rat medial entorhinal cortex. <i>Journal of Neuroscience</i> , 2011 , 31, 12683-94	6.6	41
156	Enhanced cholinergic suppression of previously strengthened synapses enables the formation of self-organized representations in olfactory cortex. <i>Neurobiology of Learning and Memory</i> , 2003 , 80, 302-	·34 ¹	41
155	Nicotinic modulation of glutamatergic synaptic transmission in region CA3 of the hippocampus. <i>European Journal of Neuroscience</i> , 2005 , 22, 1349-56	3.5	40
154	Effects of acetylcholine on neuronal properties in entorhinal cortex. <i>Frontiers in Behavioral Neuroscience</i> , 2012 , 6, 32	3.5	39
153	GABA(B) modulation improves sequence disambiguation in computational models of hippocampal region CA3. <i>Hippocampus</i> , 1998 , 8, 171-93	3.5	39
152	Bridging the gap: integrating cellular and functional magnetic resonance imaging studies of the hippocampus. <i>Hippocampus</i> , 1999 , 9, 45-53	3.5	39
151	A model for experience-dependent changes in the responses of inferotemporal neurons. <i>Network: Computation in Neural Systems</i> , 2000 , 11, 169-190	0.7	37
150	A simple biophysically plausible model for long time constants in single neurons. <i>Hippocampus</i> , 2015 , 25, 27-37	3.5	36
149	A high-resolution study of hippocampal and medial temporal lobe correlates of spatial context and prospective overlapping route memory. <i>Hippocampus</i> , 2014 , 24, 819-39	3.5	36
148	GABA(B) presynaptic inhibition has an in vivo time constant sufficiently rapid to allow modulation at theta frequency. <i>Journal of Neurophysiology</i> , 2002 , 87, 1196-205	3.2	36
147	Neural activity in the horizontal limb of the diagonal band of broca can be modulated by electrical stimulation of the olfactory bulb and cortex in rats. <i>Neuroscience Letters</i> , 2000 , 282, 157-60	3.3	36
146	Neuronal representation of environmental boundaries in egocentric coordinates. <i>Nature Communications</i> , 2019 , 10, 2772	17.4	35

(2011-2007)

145	First-in-first-out item replacement in a model of short-term memory based on persistent spiking. <i>Cerebral Cortex</i> , 2007 , 17, 1766-81	5.1	35	
144	Modeling of context-dependent retrieval in hippocampal region CA1: implications for cognitive function in schizophrenia. <i>Schizophrenia Research</i> , 2007 , 89, 177-90	3.6	34	
143	Cholinergic suppression of glutamatergic synaptic transmission in hippocampal region CA3 exhibits laminar selectivity: Implication for hippocampal network dynamics. <i>Neuroscience</i> , 2007 , 149, 760-7	3.9	34	
142	Functional connections between optic flow areas and navigationally responsive brain regions during goal-directed navigation. <i>NeuroImage</i> , 2015 , 118, 386-96	7.9	33	
141	Decoding movement trajectories through a T-maze using point process filters applied to place field data from rat hippocampal region CA1. <i>Neural Computation</i> , 2009 , 21, 3305-34	2.9	33	
140	Arc length coding by interference of theta frequency oscillations may underlie context-dependent hippocampal unit data and episodic memory function. <i>Learning and Memory</i> , 2007 , 14, 782-94	2.8	33	
139	An integrate-and-fire model of prefrontal cortex neuronal activity during performance of goal-directed decision making. <i>Cerebral Cortex</i> , 2005 , 15, 1964-81	5.1	33	
138	Neuromodulation and the hippocampus: memory function and dysfunction in a network simulation. <i>Progress in Brain Research</i> , 1999 , 121, 3-18	2.9	33	
137	Grid cell spatial tuning reduced following systemic muscarinic receptor blockade. <i>Hippocampus</i> , 2014 , 24, 643-55	3.5	32	
136	Cellular dynamical mechanisms for encoding the time and place of events along spatiotemporal trajectories in episodic memory. <i>Behavioural Brain Research</i> , 2010 , 215, 261-74	3.4	32	
135	Theta rhythmic stimulation of stratum lacunosum-moleculare in rat hippocampus contributes to associative LTP at a phase offset in stratum radiatum. <i>Journal of Neurophysiology</i> , 2004 , 92, 1615-24	3.2	32	
134	Selective suppression of afferent but not intrinsic fiber synaptic transmission by 2-amino-4-phosphonobutyric acid (AP4) in piriform cortex. <i>Brain Research</i> , 1991 , 548, 248-55	3.7	32	
133	Neuromodulation of I(h) in layer II medial entorhinal cortex stellate cells: a voltage-clamp study. Journal of Neuroscience, 2012 , 32, 9066-72	6.6	31	
132	Neuronal rebound spiking, resonance frequency and theta cycle skipping may contribute to grid cell firing in medial entorhinal cortex. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2014 , 369, 20120523	5.8	30	
131	Functional transitions between epileptiform-like activity and associative memory in hippocampal region CA3. <i>Brain Research Bulletin</i> , 1997 , 43, 485-93	3.9	29	
130	Using connectionist models to guide assessment of psycological disorder <i>Psychological Assessment</i> , 2002 , 14, 263-278	5.3	28	
129	Individual Differences in Human Path Integration Abilities Correlate with Gray Matter Volume in Retrosplenial Cortex, Hippocampus, and Medial Prefrontal Cortex. <i>ENeuro</i> , 2017 , 4,	3.9	28	
128	How We Remember 2011 ,		28	

127	A neural microcircuit model for a scalable scale-invariant representation of time. <i>Hippocampus</i> , 2019 , 29, 260-274	3.5	28
126	Temporally structured replay of neural activity in a model of entorhinal cortex, hippocampus and postsubiculum. <i>European Journal of Neuroscience</i> , 2008 , 28, 1301-15	3.5	26
125	Coincidence detection of place and temporal context in a network model of spiking hippocampal neurons. <i>PLoS Computational Biology</i> , 2007 , 3, e234	5	26
124	From biophysics to behavior: Catacomb2 and the design of biologically-plausible models for spatial navigation. <i>Neuroinformatics</i> , 2003 , 1, 3-42	3.2	26
123	Modeling boundary vector cell firing given optic flow as a cue. <i>PLoS Computational Biology</i> , 2012 , 8, e1	00⁄2553	3 25
122	Grid cell firing properties vary as a function of theta phase locking preferences in the rat medial entorhinal cortex. <i>Frontiers in Systems Neuroscience</i> , 2014 , 8, 193	3.5	24
121	Reversed and forward buffering of behavioral spike sequences enables retrospective and prospective retrieval in hippocampal regions CA3 and CA1. <i>Neural Networks</i> , 2008 , 21, 276-88	9.1	24
120	Neural mechanisms of navigation involving interactions of cortical and subcortical structures. Journal of Neurophysiology, 2018 , 119, 2007-2029	3.2	23
119	Head direction cells in the postsubiculum do not show replay of prior waking sequences during sleep. <i>Hippocampus</i> , 2012 , 22, 604-18	3.5	23
118	Spatial Memory Sequence Encoding and Replay During Modeled Theta and Ripple Oscillations. <i>Cognitive Computation</i> , 2011 , 3, 554-574	4.4	23
117	Voltage dependence of subthreshold resonance frequency in layer II of medial entorhinal cortex. <i>Hippocampus</i> , 2012 , 22, 1733-49	3.5	22
116	The Firing Rate Speed Code of Entorhinal Speed Cells Differs across Behaviorally Relevant Time Scales and Does Not Depend on Medial Septum Inputs. <i>Journal of Neuroscience</i> , 2019 , 39, 3434-3453	6.6	22
115	Examination of rhythmicity of extracellularly recorded neurons in the entorhinal cortex. Hippocampus, 2015 , 25, 460-73	3.5	20
114	Distinct Functional Groups Emerge from the Intrinsic Properties of Molecularly Identified Entorhinal Interneurons and Principal Cells. <i>Cerebral Cortex</i> , 2017 , 27, 3186-3207	5.1	20
113	Rebound spiking in layer II medial entorhinal cortex stellate cells: Possible mechanism of grid cell function. <i>Neurobiology of Learning and Memory</i> , 2016 , 129, 83-98	3.1	19
112	In vivo cholinergic modulation of the cellular properties of medial entorhinal cortex neurons. <i>Journal of Physiology</i> , 2013 , 591, 2611-27	3.9	19
111	A phase code for memory could arise from circuit mechanisms in entorhinal cortex. <i>Neural Networks</i> , 2009 , 22, 1129-38	9.1	19
110	A hierarchical model of goal directed navigation selects trajectories in a visual environment. Neurobiology of Learning and Memory, 2015, 117, 109-21	3.1	18

109	Differences in Visual-Spatial Input May Underlie Different Compression Properties of Firing Fields for Grid Cell Modules in Medial Entorhinal Cortex. <i>PLoS Computational Biology</i> , 2015 , 11, e1004596	5	18	
108	Modeling the influence of optic flow on grid cell firing in the absence of other cues1. <i>Journal of Computational Neuroscience</i> , 2012 , 33, 475-93	1.4	18	
107	Grid cell firing patterns may arise from feedback interaction between intrinsic rebound spiking and transverse traveling waves with multiple heading angles. <i>Frontiers in Systems Neuroscience</i> , 2014 , 8, 20	01 ^{3.5}	17	
106	A model for experience-dependent changes in the responses of inferotemporal neurons		17	
105	Post-Inhibitory Rebound Spikes in Rat Medial Entorhinal Layer II/III Principal Cells: In Vivo, In Vitro, and Computational Modeling Characterization. <i>Cerebral Cortex</i> , 2017 , 27, 2111-2125	5.1	16	
104	Modelling effects on grid cells of sensory input during self-motion. <i>Journal of Physiology</i> , 2016 , 594, 6	51 3. 652	2 6 16	
103	Trajectory-modulated hippocampal neurons persist throughout memory-guided navigation. <i>Nature Communications</i> , 2020 , 11, 2443	17.4	15	
102	Flexible resonance in prefrontal networks with strong feedback inhibition. <i>PLoS Computational Biology</i> , 2018 , 14, e1006357	5	15	
101	Cholinergic receptor activation supports persistent firing in layer III neurons in the medial entorhinal cortex. <i>Behavioural Brain Research</i> , 2013 , 254, 108-15	3.4	15	
100	Effect of long term baclofen treatment on recognition memory and novelty detection. <i>Behavioural Brain Research</i> , 1996 , 74, 145-52	3.4	15	
99	The brain in motion: How ensemble fluidity drives memory-updating and flexibility. ELife, 2020, 9,	8.9	15	
98	A network model of behavioural performance in a rule learning task. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2018 , 373,	5.8	14	
97	Structural Differences in Hippocampal and Entorhinal Gray Matter Volume Support Individual Differences in First Person Navigational Ability. <i>Neuroscience</i> , 2018 , 380, 123-131	3.9	14	
96	Medial entorhinal grid cells and head direction cells rotate with a T-maze more often during less recently experienced rotations. <i>Cerebral Cortex</i> , 2014 , 24, 1630-44	5.1	14	
95	Complementary roles of medial temporal lobes and mid-dorsolateral prefrontal cortex for working memory for novel and familiar trial-unique visual stimuli. <i>European Journal of Neuroscience</i> , 2013 , 37, 668-78	3.5	14	
94	A model of behavioral treatments for self-mutilation behavior in Lesch-Nyhan syndrome. <i>NeuroReport</i> , 2008 , 19, 459-62	1.7	14	
93	Which way and how far? Tracking of translation and rotation information for human path integration. <i>Human Brain Mapping</i> , 2016 , 37, 3636-55	5.9	14	
92	Reduced spiking in entorhinal cortex during the delay period of a cued spatial response task. Learning and Memory, 2012 , 19, 219-30	2.8	13	

91	A biophysical implementation of a bidirectional graph search algorithm to solve multiple goal navigation tasks. <i>Connection Science</i> , 2005 , 17, 145-164	2.8	13
90	Using connectionist models to guide assessment of psychological disorder. <i>Psychological Assessment</i> , 2002 , 14, 263-78	5.3	13
89	Navigating Through Time: A Spatial Navigation Perspective on How the Brain May Encode Time. <i>Annual Review of Neuroscience</i> , 2020 , 43, 73-93	17	11
88	Models of spatial and temporal dimensions of memory. <i>Current Opinion in Behavioral Sciences</i> , 2017 , 17, 27-33	4	11
87	Bio-inspired homogeneous multi-scale place recognition. <i>Neural Networks</i> , 2015 , 72, 48-61	9.1	11
86	Multi-scale bio-inspired place recognition 2014,		11
85	Potential roles of cholinergic modulation in the neural coding of location and movement speed. Journal of Physiology (Paris), 2016 , 110, 52-64		11
84	Hippocampal spatial memory representations in mice are heterogeneously stable. <i>Hippocampus</i> , 2021 , 31, 244-260	3.5	11
83	Septal Modulation of Hippocampal Dynamics: What Is the Function of the Theta Rhythm? 2000 , 92-114		11
82	Comparison of properties of medial entorhinal cortex layer II neurons in two anatomical dimensions with and without cholinergic activation. <i>PLoS ONE</i> , 2013 , 8, e73904	3.7	10
81	Avoiding Catastrophic Forgetting. <i>Trends in Cognitive Sciences</i> , 2017 , 21, 407-408	14	9
80	Current questions on space and time encoding. <i>Hippocampus</i> , 2015 , 25, 744-52	3.5	9
79	CA3 sees the big picture while dentate gyrus splits hairs. <i>Neuron</i> , 2014 , 81, 226-8	13.9	9
78	Systemic administration of two different anxiolytic drugs decreases local field potential theta frequency in the medial entorhinal cortex without affecting grid cell firing fields. <i>Neuroscience</i> , 2017 , 364, 60-70	3.9	9
77	Neuroscience. The scale of experience. <i>Science</i> , 2008 , 321, 46-7	33.3	9
76	Difference in time course of modulation of synaptic transmission by group II versus group III metabotropic glutamate receptors in region CA1 of the hippocampus. <i>Hippocampus</i> , 2006 , 16, 1004-16	3.5	9
75	A model of STDP based on spatially and temporally local information: derivation and combination with gated decay. <i>Neural Networks</i> , 2005 , 18, 458-66	9.1	9
74	The influence of Markov decision process structure on the possible strategic use of working memory and episodic memory. <i>PLoS ONE</i> , 2008 , 3, e2756	3.7	9

73	Further implications of a computational model of septohippocampal cholinergic modulation in eyeblink conditioning. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 1998 , 26, 1-20		9
72	Rebound spiking properties of mouse medial entorhinal cortex neurons in vivo. <i>European Journal of Neuroscience</i> , 2015 , 42, 2974-84	3.5	8
71	Analyses of Markov decision process structure regarding the possible strategic use of interacting memory systems. <i>Frontiers in Computational Neuroscience</i> , 2008 , 2, 6	3.5	8
70	A neural circuit model for a contextual association task inspired by recommender systems. Hippocampus, 2020 , 30, 384-395	3.5	7
69	Expecting the unexpected: modeling of neuromodulation. <i>Neuron</i> , 2005 , 46, 526-8	13.9	7
68	A biophysical simulation of intrinsic and network properties of entorhinal cortex. <i>Neurocomputing</i> , 1999 , 26-27, 375-380	5.4	7
67	A simulation of parahippocampal and hippocampal structures guiding spatial navigation of a virtual rat in a virtual environment: a functional framework for theta theory 2002 , 139-161		7
66	Prefrontal oscillations modulate the propagation of neuronal activity required for working memory. <i>Neurobiology of Learning and Memory</i> , 2020 , 173, 107228	3.1	6
65	Consequences of parameter differences in a model of short-term persistent spiking buffers provided by pyramidal cells in entorhinal cortex. <i>Brain Research</i> , 2008 , 1202, 54-67	3.7	6
64	A model of hippocampal circuitry mediating goal-driven navigation in a familiar environment. <i>Neurocomputing</i> , 2002 , 44-46, 423-427	5.4	6
63	Neural circuits for learning context-dependent associations of stimuli. Neural Networks, 2018, 107, 48-6	509.1	5
62	A model of hippocampal spiking responses to items during learning of a context-dependent task. <i>Frontiers in Systems Neuroscience</i> , 2014 , 8, 178	3.5	5
61	Malignant synaptic growth and Alzheimer's disease. Future Neurology, 2012, 7, 557-571	1.5	5
60	Modeling of grid cell activity demonstrates in vivo entorhinal 'look-ahead' properties. <i>Neuroscience</i> , 2013 , 247, 395-411	3.9	5
59	An analysis of the mean theta phase of population activity in a model of hippocampal region CA1. <i>Network: Computation in Neural Systems</i> , 2006 , 17, 277-97	0.7	5
58	Is autism partly a consolidation disorder?. Behavioral and Cognitive Neuroscience Reviews, 2002, 1, 251-6	3	5
57	Neurophysiological coding of space and time in the hippocampus, entorhinal cortex, and retrosplenial cortex. <i>Brain and Neuroscience Advances</i> , 2020 , 4, 2398212820972871	4	5
56	A model of symbolic processing in Raven® progressive matrices. <i>Biologically Inspired Cognitive Architectures</i> , 2017 , 21, 47-58		4

55	If I had a million neurons: Potential tests of cortico-hippocampal theories. <i>Progress in Brain Research</i> , 2015 , 219, 1-19	2.9	4
54	Bio-inspired models of memory capacity, recall performance and theta phase precession in the hippocampus 2011 ,		4
53	Feature extraction in Q-learning using neural networks 2017,		3
52	Deep belief networks learn context dependent behavior. <i>PLoS ONE</i> , 2014 , 9, e93250	3.7	3
51	Dynamics and Function of a CA1 Model of the Hippocampus during Theta and Ripples. <i>Lecture Notes in Computer Science</i> , 2010 , 230-240	0.9	3
50	The Unexplored Territory of Neural Models: Potential Guides for Exploring the Function of Metabotropic Neuromodulation. <i>Neuroscience</i> , 2021 , 456, 143-158	3.9	3
49	△ compressed representation of spatial distance in the rodent hippocampus□		3
48	Overview of computational models of hippocampus and related structures: Introduction to the special issue. <i>Hippocampus</i> , 2020 , 30, 295-301	3.5	2
47	Bio-inspired multi-scale fusion. <i>Biological Cybernetics</i> , 2020 , 114, 209-229	2.8	2
46	The Role of Hierarchical Dynamical Functions in Coding for Episodic Memory and Cognition. <i>Journal of Cognitive Neuroscience</i> , 2019 , 31, 1271-1289	3.1	2
45	Rhythm-induced spike-timing patterns characterized by 1D firing maps. <i>Journal of Computational Neuroscience</i> , 2013 , 34, 59-71	1.4	2
44	Models and Theoretical Frameworks for Hippocampal and Entorhinal Cortex Function in Memory and Navigation. <i>Springer Series in Computational Neuroscience</i> , 2015 , 247-268	1.1	2
43	A simple rule for spike-timing-dependent plasticity: local influence of AHP current. <i>Neurocomputing</i> , 2005 , 65-66, 885-890	5.4	2
42	Effects of visual inputs on neural dynamics for coding of location and running speed in medial entorhinal cortex. <i>ELife</i> , 2020 , 9,	8.9	2
41	Egocentric boundary vector tuning of the retrosplenial cortex		2
40	Hippocampal spatial memory representations in mice are heterogeneously stable		2
39	Modeling the Piriform Cortex. <i>Cerebral Cortex</i> , 1999 , 525-560		2
38	Modulatory Influences on the Hippocampus and Entorhinal Cortex 2014 , 153-189		2

(2008-2016)

37	Physiological Properties of Neurons in Bat Entorhinal Cortex Exhibit an Inverse Gradient along the Dorsal-Ventral Axis Compared to Entorhinal Neurons in Rat. <i>Journal of Neuroscience</i> , 2016 , 36, 4591-9	6.6	2
36	Consistent population activity on the scale of minutes in the mouse hippocampus		2
35	Consistent population activity on the scale of minutes in the mouse hippocampus <i>Hippocampus</i> , 2022 ,	3.5	2
34	Howard Eichenbaum 1947-2017. Nature Neuroscience, 2017, 20, 1432-1433	25.5	1
33	A Geometric Characterization of Population Coding in the Prefrontal Cortex and Hippocampus during a Paired-Associate Learning Task. <i>Journal of Cognitive Neuroscience</i> , 2020 , 32, 1455-1465	3.1	1
32	Howard Eichenbaum (1947-2017). <i>Science</i> , 2017 , 357, 875	33.3	1
31	A reversing buffer mechanism that enables instances of retrospective activity in hippocampal regions CA3 and CA1. <i>Neural Networks (IJCNN), International Joint Conference on</i> , 2007 ,		1
30	Less is more: how reduced activity reflects stronger recognition. <i>Neuron</i> , 2005 , 47, 625-7	13.9	1
29	Theta rhythm oscillations and sequence encoding in the hippocampus. <i>Neurocomputing</i> , 2001 , 38-40, 633-640	5.4	1
28	Are there common neural mechanisms for learning, epilepsy, and Alzheimer's disease? 1998 , 316-344		1
27	DOES THE SPREAD OF ALZHEIMER'S DISEASE NEUROPATHOLOGY INVOLVE THE MECHANISMS OF CONSOLIDATION?. <i>Progress in Neural Processing</i> , 1996 , 43-62		1
26	Internally Generated Time in the Rodent Hippocampus is Logarithmically Compressed		1
25	Neural responses in retrosplenial cortex associated with environmental alterations. <i>IScience</i> , 2021 , 24, 103377	6.1	1
24	Prefrontal oscillations modulate the propagation of neuronal activity required for working memory		1
23	A Model of Changes in Inferotemporal Activity during a Delayed Match-To-Sample Task 1997 , 845-850		1
22	Functional Magnetic Resonance Imaging and Computational Modeling 1997 , 859-865		1
21	Bursting and Oscillations in a Biophysical Model of Hippocampal Region CA3: Implications for Associative Memory and Epileptiform Activity 1997 , 547-552		1
20	Foreword: Special issue on grid cells. <i>Hippocampus</i> , 2008 , 18, 1141	3.5	O

19	Neural circuits and symbolic processing. Neurobiology of Learning and Memory, 2021, 186, 107552	3.1	О
18	Unlocking neural complexity with a robotic key. <i>Journal of Physiology</i> , 2016 , 594, 6559-6567	3.9	O
17	Adaptive integration of self-motion and goals in posterior parietal cortex Cell Reports, 2022, 38, 1105	04 10.6	O
16	Remembering by index and content: Response to Sarah Robins. <i>Philosophical Psychology</i> , 2015 , 28, 916	-9 ₁₁ 9	
15	Location memory: separate cortical coding for distal and local cues. Current Biology, 2013, 23, R685-7	6.3	
14	Sources of the spatial code within the hippocampus. <i>F1000 Biology Reports</i> , 2009 , 1, 3		
13	Theta rhythm and bidirectional plasticity in the hippocampus174-191		
12	Nicotinic modulation of glutamatergic synaptic transmission in region CA3 of the hippocampus. <i>European Journal of Neuroscience</i> , 2005 , 22, 2679-2679	3.5	
11	Entorhinal neuronal activity during delayed matching tasks may depend upon muscarinic-induced non-specific cation current I(CANM). <i>Neurocomputing</i> , 2001 , 38-40, 601-606	5.4	
10	Coincidence Detection of Place and Temporal Context in a Network Model of Spiking Hippocampal Neurons. <i>PLoS Computational Biology</i> , 2005 , preprint, e234	5	
9	Mechanisms for Memory-Guided Behavior Involving Persistent Firing and Theta Rhythm Oscillations in the Entorhinal Cortex. <i>Lecture Notes in Computer Science</i> , 2008 , 28-37	0.9	
8	Feedback Regulation of Cholinergic Modulation and Hippocampal Memory Function 1995 , 227-232		
7	Neuromodulation of Hippocampal Population Coding: Place Field Development and Phase Precession 1998 , 119-124		
6	A Mathematical Description for Gabaergic Modulation of Sequence Disambiguation in Hippocampal Region CA3 1998 , 525-530		
5	Computational Neuroscience: Hippocampus 2016 , 3081-3095		
4	Computational Neuroscience: Hippocampus 2016 , 1-15		
3	20 Years of the Dynamics of Memory: The Long and Winding Road Linking Cellular Mechanisms to Behavior 2013 , 207-227		
2	Introduction to part two of the special issue on computational models of hippocampus and related structures. <i>Hippocampus</i> , 2020 , 30, 1328-1331	3.5	

LIST OF PUBLICATIONS

Impact of optogenetic pulse design on CA3 learning and replay: A neural model. *Cell Reports Methods*, **2022**, 100208