
Dapeng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7145539/publications.pdf Version: 2024-02-01

DADENC WANC

#	Article	IF	CITATIONS
1	KaKs_Calculator 2.0: A Toolkit Incorporating Gamma-Series Methods and Sliding Window Strategies. Genomics, Proteomics and Bioinformatics, 2010, 8, 77-80.	6.9	1,301
2	A blood atlas of COVID-19 defines hallmarks of disease severity and specificity. Cell, 2022, 185, 916-938.e58.	28.9	164
3	An immunodominant NP105–113-B*07:02 cytotoxic T cell response controls viral replication and is associated with less severe COVID-19 disease. Nature Immunology, 2022, 23, 50-61.	14.5	110
4	Identification of LZTFL1 as a candidate effector gene at a COVID-19 risk locus. Nature Genetics, 2021, 53, 1606-1615.	21.4	93
5	Single-Cell Network Analysis Identifies DDIT3 as a Nodal Lineage Regulator in Hematopoiesis. Cell Reports, 2015, 11, 1503-1510.	6.4	70
6	A Human IPS Model Implicates Embryonic B-Myeloid Fate Restriction as Developmental Susceptibility to BÂAcute Lymphoblastic Leukemia-Associated ETV6-RUNX1. Developmental Cell, 2018, 44, 362-377.e7.	7.0	65
7	Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from retail shellfish in Shanghai. Food Control, 2016, 60, 263-268.	5.5	60
8	Distribution of norovirus in oyster tissues. Journal of Applied Microbiology, 2008, 105, 1966-1972.	3.1	51
9	Inactivation conditions for human norovirus measured by an in situ capture-qRT-PCR method. International Journal of Food Microbiology, 2014, 172, 76-82.	4.7	42
10	Nonsynonymous substitution rate (Ka) is a relatively consistent parameter for defining fast-evolving and slow-evolving protein-coding genes. Biology Direct, 2011, 6, 13.	4.6	37
11	Phosphoproteomic analysis reveals plant <scp>DNA</scp> damage signalling pathways with a functional role for histone H2 <scp>AX</scp> phosphorylation in plant growth under genotoxic stress. Plant Journal, 2019, 100, 1007-1021.	5.7	37
12	Retention of Vibrio parahaemolyticus in oyster tissues after chlorine dioxide treatment. International Journal of Food Microbiology, 2010, 137, 76-80.	4.7	36
13	Bacteriophage potential against Vibrio parahaemolyticus biofilms. Food Control, 2019, 98, 156-163.	5.5	34
14	hppRNA—a Snakemake-based handy parameter-free pipeline for RNA-Seq analysis of numerous samples. Briefings in Bioinformatics, 2018, 19, bbw143.	6.5	32
15	Prevalence and characterization of Salmonella serovars isolated from farm products in Shanghai. Food Control, 2018, 85, 269-275.	5.5	32
16	A Novel Role for Minimal Introns: Routing mRNAs to the Cytosol. PLoS ONE, 2010, 5, e10144.	2.5	27
17	New <i>In Situ</i> Capture Quantitative (Real-Time) Reverse Transcription-PCR Method as an Alternative Approach for Determining Inactivation of Tulane Virus. Applied and Environmental Microbiology, 2014, 80, 2120-2124.	3.1	26
18	The Rice Genome Knowledgebase (RGKbase): an annotation database for rice comparative genomics and evolutionary biology. Nucleic Acids Research, 2012, 41, D1199-D1205.	14.5	25

DAPENG WANG

#	Article	lF	CITATIONS
19	Hypoxic adaptation of leukemic cells infiltrating the CNS affords a therapeutic strategy targeting VEGFA. Blood, 2017, 129, 3126-3129.	1.4	23
20	Development and evaluation of a novel in situ target-capture approach for aptamer selection of human noroviruses. Talanta, 2019, 193, 199-205.	5.5	20
21	Endometrium On-a-Chip Reveals Insulin- and Glucose-induced Alterations in the Transcriptome and Proteomic Secretome. Endocrinology, 2021, 162, .	2.8	18
22	Trehalose-Induced Remodelling of the Human Microbiota Affects Clostridioides difficile Infection Outcome in an In Vitro Colonic Model: A Pilot Study. Frontiers in Cellular and Infection Microbiology, 2021, 11, 670935.	3.9	18
23	Both Size and GC-Content of Minimal Introns Are Selected in Human Populations. PLoS ONE, 2011, 6, e17945.	2.5	18
24	Transposon-Derived and Satellite-Derived Repetitive Sequences Play Distinct Functional Roles in Mammalian Intron Size Expansion. Evolutionary Bioinformatics, 2012, 8, EBO.S9758.	1.2	17
25	Seasonal dynamics and diversity of bacteria in retail oyster tissues. International Journal of Food Microbiology, 2014, 173, 14-20.	4.7	17
26	Cytoplasmic long noncoding RNAs are differentially regulated and translated during human neuronal differentiation. Rna, 2021, 27, 1082-1101.	3.5	17
27	The role of CAPG in molecular communication between the embryo and the uterine endometrium: Is its function conserved in species with different implantation strategies?. FASEB Journal, 2020, 34, 11015-11029.	0.5	15
28	Redesigned Duplex RT-qPCR for the Detection of GI and GII Human Noroviruses. Engineering, 2020, 6, 442-448.	6.7	15
29	Surveillance of human norovirus in oysters collected from production area in Shandong Province, China during 2017–2018. Food Control, 2021, 121, 107649.	5.5	15
30	Seed DNA damage responses promote germination and growth in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	15
31	Engineering Bacterial Surface Displayed Human Norovirus Capsid Proteins: A Novel System to Explore Interaction Between Norovirus and Ligands. Frontiers in Microbiology, 2015, 6, 1448.	3.5	12
32	In Situ Capture RT-qPCR: A New Simple and Sensitive Method to Detect Human Norovirus in Oysters. Frontiers in Microbiology, 2017, 8, 554.	3.5	12
33	Characterization of a Histo-Blood Group Antigen-like Substance in Romaine Lettuce That Contributes to Human Norovirus Attachment. Journal of Agricultural and Food Chemistry, 2020, 68, 1207-1212.	5.2	12
34	Culturable bacteria resident on lettuce might contribute to accumulation of human noroviruses. International Journal of Food Microbiology, 2020, 317, 108492.	4.7	11
35	Fingerprinting of human noroviruses co-infections in a possible foodborne outbreak by metagenomics. International Journal of Food Microbiology, 2020, 333, 108787.	4.7	11
36	Bacterial Surface-Displayed GII.4 Human Norovirus Capsid Proteins Bound to HBGA-Like Molecules in Romaine Lettuce. Frontiers in Microbiology, 2017, 8, 251.	3.5	10

DAPENG WANG

#	Article	IF	CITATIONS
37	A Bacterial Surface Display System Expressing Cleavable Capsid Proteins of Human Norovirus: A Novel System to Discover Candidate Receptors. Frontiers in Microbiology, 2017, 8, 2405.	3.5	10
38	Broad-range and effective detection of human noroviruses by colloidal gold immunochromatographic assay based on the shell domain of the major capsid protein. BMC Microbiology, 2021, 21, 22.	3.3	9
39	LCGbase: A Comprehensive Database for Lineage-Based Co-regulated Genes. Evolutionary Bioinformatics, 2012, 8, EBO.S8540.	1.2	7
40	GCevobase: an evolution-based database for GC content in eukaryotic genomes. Bioinformatics, 2018, 34, 2129-2131.	4.1	6
41	IntronDB: a database for eukaryotic intron features. Bioinformatics, 2019, 35, 4400-4401.	4.1	6
42	Oyster Heat Shock Protein 70 Plays a Role in Binding of Human Noroviruses. Applied and Environmental Microbiology, 2021, 87, e0079021.	3.1	6
43	KGCAK: a K-mer based database for genome-wide phylogeny and complexity evaluation. Biology Direct, 2015, 10, 53.	4.6	5
44	Plastid-LCGbase: a collection of evolutionarily conserved plastid-associated gene pairs. Nucleic Acids Research, 2015, 43, D990-D995.	14.5	4
45	Functional Networking of Human Divergently Paired Genes (DPGs). PLoS ONE, 2013, 8, e78896.	2.5	3
46	An Effective Platform for Exploring Rotavirus Receptors by Bacterial Surface Display System. Virologica Sinica, 2020, 35, 103-109.	3.0	3
47	Library Preparation Based on Transposase Assisted RNA/DNA Hybrid Co-Tagmentation for Next-Generation Sequencing of Human Noroviruses. Viruses, 2021, 13, 65.	3.3	3
48	Detection of group A rotavirus in oyster tissues by in situ capture RT-qPCR. Food Control, 2021, 127, 108161.	5.5	2
49	LCCserver: A Webserver for Exploring Evolutionary Trajectory of Gene Orders in a Large Number of Genomes. OMICS A Journal of Integrative Biology, 2015, 19, 574-577.	2.0	0
50	DLCP: A database for lineage-conserved and lineage-specific gene pairs in animal and plant genomes. Biochemical and Biophysical Research Communications, 2016, 469, 542-545.	2.1	0
51	RNA-Seq analysis of a Pax3-expressing myoblast clone in-vitro and effect of culture surface stiffness on differentiation. Scientific Reports, 2022, 12, 2841.	3.3	0