
Dominik Egger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7145484/publications.pdf Version: 2024-02-01

DOMINIK FCCEP

#	Article	IF	CITATIONS
1	Hypoxia Conditioned Mesenchymal Stem Cell-Derived Extracellular Vesicles Induce Increased Vascular Tube Formation in vitro. Frontiers in Bioengineering and Biotechnology, 2019, 7, 292.	2.0	129
2	Dynamic Cultivation of Mesenchymal Stem Cell Aggregates. Bioengineering, 2018, 5, 48.	1.6	59
3	3D Printing of Cell Culture Devices: Assessment and Prevention of the Cytotoxicity of Photopolymers for Stereolithography. Materials, 2020, 13, 3011.	1.3	46
4	Development and Characterization of a Parallelizable Perfusion Bioreactor for 3D Cell Culture. Bioengineering, 2017, 4, 51.	1.6	38
5	Towards Physiologic Culture Approaches to Improve Standard Cultivation of Mesenchymal Stem Cells. Cells, 2021, 10, 886.	1.8	32
6	Hypoxic Three-Dimensional Scaffold-Free Aggregate Cultivation of Mesenchymal Stem Cells in a Stirred Tank Reactor. Bioengineering, 2017, 4, 47.	1.6	28
7	Application of a Parallelizable Perfusion Bioreactor for Physiologic 3D Cell Culture. Cells Tissues Organs, 2017, 203, 316-326.	1.3	27
8	Heterogeneity of mesenchymal stem cell-derived extracellular vesicles is highly impacted by the tissue/cell source and culture conditions. Cell and Bioscience, 2022, 12, 51.	2.1	24
9	The Power of LC-MS Based Multiomics: Exploring Adipogenic Differentiation of Human Mesenchymal Stem/Stromal Cells. Molecules, 2019, 24, 3615.	1.7	23
10	Influence of Charge and Heat on the Mechanical Properties of Scaffolds from Ionic Complexation of Chitosan and Carboxymethyl Cellulose. ACS Biomaterials Science and Engineering, 2021, 7, 3618-3632.	2.6	12
11	From 3D to 3D: isolation of mesenchymal stem/stromal cells into a three-dimensional human platelet lysate matrix. Stem Cell Research and Therapy, 2019, 10, 248.	2.4	11
12	Advanced Dynamic Cell and Tissue Culture. Bioengineering, 2018, 5, 65.	1.6	9
13	Alginate Core–Shell Capsules for 3D Cultivation of Adipose-Derived Mesenchymal Stem Cells. Bioengineering, 2022, 9, 66.	1.6	8
14	Physiologic isolation and expansion of human mesenchymal stem/stromal cells for manufacturing of cellâ€based therapy products. Engineering in Life Sciences, 2022, 22, 361-372.	2.0	6
15	Innovative Platform for the Advanced Online Monitoring of Three-Dimensional Cells and Tissue Cultures. Cells, 2022, 11, 412.	1.8	3
16	Approaches for automized expansion and differentiation of human MSC in specialized bioreactors. BMC Proceedings, 2013, 7, .	1.8	2
17	Cell Culture Conditions: Cultivation of Stem Cells Under Dynamic Conditions. , 2018, , 1-33.		2
18	Advanced Online Monitoring of In Vitro Human 3D Full-Thickness Skin Equivalents. Pharmaceutics, 2022, 14, 1436.	2.0	2

DOMINIK EGGER

#	Article	IF	CITATIONS
19	Dynamic cultivation of human stem cells under physiological conditions. BMC Proceedings, 2015, 9, .	1.8	1
20	Introduction to 3D Cell Culture. Learning Materials in Biosciences, 2021, , 1-26.	0.2	1
21	Hypoxia conditioned mesenchymal stem cell-derived extracellular vesicles induce increased in vitro vascular tube formation. Cytotherapy, 2021, 23, S116-S117.	0.3	1
22	Cell Culture Conditions: Cultivation of Stem Cells Under Dynamic Conditions. , 2020, , 415-447.		1
23	Advanced in vitro management of three-dimensional cell cultures and explanted tissue. Cytotherapy, 2021, 23, S145.	0.3	Ο
24	Editorial: Advanced Cell Culture Technologies to Boost Cell-Based Therapies. Frontiers in Bioengineering and Biotechnology, 2021, 9, 727298.	2.0	0
25	Automation of Cell Culture Processes. Learning Materials in Biosciences, 2018, , 155-168.	0.2	0