Mujun Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7144844/publications.pdf Version: 2024-02-01

MIIIIN SIIN

#	Article	IF	CITATIONS
1	Targeting the Cerebrovascular System: Next-Generation Biomarkers and Treatment for Mild Traumatic Brain Injury. Neuroscientist, 2022, 28, 594-612.	3.5	15
2	Decrease in Plasma miR-27a and miR-221 After Concussion in Australian Football Players. Biomarker Insights, 2022, 17, 117727192210813.	2.5	9
3	Serum Protein Biomarkers of Inflammation, Oxidative Stress, and Cerebrovascular and Glial Injury in Concussed Australian Football Players. Journal of Neurotrauma, 2022, 39, 800-808.	3.4	4
4	Aging, the immune response, and traumatic brain injury. , 2022, , 149-159.		0
5	Elevated Serum Interleukin-1β Levels in Male, but not Female, Collision Sport Athletes with a Concussion History. Journal of Neurotrauma, 2021, 38, 1350-1357.	3.4	13
6	Behavioral, axonal, and proteomic alterations following repeated mild traumatic brain injury: Novel insights using a clinically relevant rat model. Neurobiology of Disease, 2021, 148, 105151.	4.4	27
7	A systemic immune challenge to model hospital-acquired infections independently regulates immune responses after pediatric traumatic brain injury. Journal of Neuroinflammation, 2021, 18, 72.	7.2	10
8	Diffusion Imaging Reveals Sex Differences in the White Matter Following Sports-Related Concussion. Cerebral Cortex, 2021, 31, 4411-4419.	2.9	20
9	White and Gray Matter Abnormalities in Australian Footballers With a History of Sports-Related Concussion: An MRI Study. Cerebral Cortex, 2021, 31, 5331-5338.	2.9	7
10	Temporal profile and utility of serum neurofilament light in a rat model of mild traumatic brain injury. Experimental Neurology, 2021, 341, 113698.	4.1	17
11	Activation of the Protein Kinase R–Like Endoplasmic Reticulum Kinase (PERK) Pathway of the Unfolded Protein Response after Experimental Traumatic Brain Injury and Treatment with a PERK Inhibitor. Neurotrauma Reports, 2021, 2, 330-342.	1.4	5
12	Gut microbiome depletion and repetitive mild traumatic brain injury differentially modify bone development in male and female adolescent rats. Bone Reports, 2021, 15, 101123.	0.4	2
13	Prolonged elevation of serum neurofilament light after concussion in male Australian football players. Biomarker Research, 2021, 9, 4.	6.8	44
14	Pain in the Developing Brain: Early Life Factors Alter Nociception and Neurobiological Function in Adolescent Rats. Cerebral Cortex Communications, 2021, 2, tgab014.	1.6	8
15	Serum Neurofilament Light as a Biomarker of Traumatic Brain Injury in the Presence of Concomitant Peripheral Injury. Biomarker Insights, 2021, 16, 117727192110534.	2.5	10
16	The genetic ablation of tau improves long-term, but not short-term, functional outcomes after experimental traumatic brain injury in mice. Brain Injury, 2020, 34, 131-139.	1.2	14
17	Inhibitory neuronal changes following a mixed diffuseâ€focal model of traumatic brain injury. Journal of Comparative Neurology, 2020, 528, 175-198.	1.6	12
18	The need to incorporate aged animals into the preclinical modeling of neurological conditions. Neuroscience and Biobehavioral Reviews, 2020, 109, 114-128.	6.1	33

Mujun Sun

#	Article	IF	CITATIONS
19	Catastrophic consequences: can the feline parasite Toxoplasma gondii prompt the purrfect neuroinflammatory storm following traumatic brain injury?. Journal of Neuroinflammation, 2020, 17, 222.	7.2	4
20	Serum Protein Biomarker Findings Reflective of Oxidative Stress and Vascular Abnormalities in Male, but Not Female, Collision Sport Athletes. Frontiers in Neurology, 2020, 11, 549624.	2.4	20
21	Contrast enhanced magnetic resonance imaging highlights neurovasculature changes following experimental traumatic brain injury in the rat. Scientific Reports, 2020, 10, 21252.	3.3	5
22	Shortened telomeres and serum protein biomarker abnormalities in collision sport athletes regardless of concussion history and sex. Journal of Concussion, 2020, 4, 205970022097560.	0.6	13
23	The interaction of the circadian and immune system: Desynchrony as a pathological outcome to traumatic brain injury. Neurobiology of Sleep and Circadian Rhythms, 2020, 9, 100058.	2.8	13
24	A novel rat model of heterotopic ossification after polytrauma with traumatic brain injury. Bone, 2020, 133, 115263.	2.9	16
25	Beyond the Brain: Peripheral Interactions after Traumatic Brain Injury. Journal of Neurotrauma, 2020, 37, 770-781.	3.4	73
26	Experimental traumatic brain injury does not lead to lung infection. Journal of Neuroimmunology, 2020, 343, 577239.	2.3	3
27	Transactive Response DNA-Binding Protein 43 Abnormalities after Traumatic Brain Injury. Journal of Neurotrauma, 2019, 36, 87-99.	3.4	26
28	Repeated mild traumatic brain injuries induce persistent changes in plasma protein and magnetic resonance imaging biomarkers in the rat. Scientific Reports, 2019, 9, 14626.	3.3	35
29	Bone Health in Rats With Temporal Lobe Epilepsy in the Absence of Anti-Epileptic Drugs. Frontiers in Pharmacology, 2019, 10, 1278.	3.5	4
30	Targeting high-mobility group box protein 1 (HMGB1) in pediatric traumatic brain injury: Chronic neuroinflammatory, behavioral, and epileptogenic consequences. Experimental Neurology, 2019, 320, 112979.	4.1	38
31	Aged rats have an altered immune response and worse outcomes after traumatic brain injury. Brain, Behavior, and Immunity, 2019, 80, 536-550.	4.1	35
32	Cover Image, Volume 527, Issue 5. Journal of Comparative Neurology, 2019, 527, C1.	1.6	0
33	Ageâ€dependent release of highâ€mobility group box proteinâ€1 and cellular neuroinflammation after traumatic brain injury in mice. Journal of Comparative Neurology, 2019, 527, 1102-1117.	1.6	37
34	The influence of immunological stressors on traumatic brain injury. Brain, Behavior, and Immunity, 2018, 69, 618-628.	4.1	34
35	Oculomotor Cognitive Control Abnormalities in Australian Rules Football Players with a History of Concussion. Journal of Neurotrauma, 2018, 35, 730-738.	3.4	29
36	Gambogic amide, a selective TrkA agonist, does not improve outcomes from traumatic brain injury in mice. Brain Injury, 2018, 32, 257-268.	1.2	14

Mujun Sun

#	Article	IF	CITATIONS
37	A Concomitant Muscle Injury Does Not Worsen Traumatic Brain Injury Outcomes in Mice. Frontiers in Neurology, 2018, 9, 1089.	2.4	9
38	Mild Traumatic Brain Injury in Adolescent Mice Alters Skull Bone Properties to Influence a Subsequent Brain Impact at Adulthood: A Pilot Study. Frontiers in Neurology, 2018, 9, 372.	2.4	18
39	Inflammation in epileptogenesis after traumatic brain injury. Journal of Neuroinflammation, 2017, 14, 10.	7.2	194
40	Treatment with an interleukin-1 receptor antagonist mitigates neuroinflammation and brain damage after polytrauma. Brain, Behavior, and Immunity, 2017, 66, 359-371.	4.1	59
41	Closed head experimental traumatic brain injury increases size and bone volume of callus in mice with concomitant tibial fracture. Scientific Reports, 2016, 6, 34491.	3.3	37
42	The effect of concomitant peripheral injury on traumatic brain injury pathobiology and outcome. Journal of Neuroinflammation, 2016, 13, 90.	7.2	102
43	Experimental Traumatic Brain Injury Induces Bone Loss in Rats. Journal of Neurotrauma, 2016, 33, 2154-2160.	3.4	26
44	Progesterone treatment reduces neuroinflammation, oxidative stress and brain damage and improves long-term outcomes in a rat model of repeated mild traumatic brain injury. Journal of Neuroinflammation, 2015, 12, 238.	7.2	112
45	Tibial Fracture Exacerbates Traumatic Brain Injury Outcomes and Neuroinflammation in a Novel Mouse Model of Multitrauma. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1339-1347.	4.3	64
46	Intracerebroventricular injection of propionic acid, an enteric metabolite implicated in autism, induces social abnormalities that do not differ between seizure-prone (FAST) and seizure-resistant (SLOW) rats. Behavioural Brain Research, 2015, 278, 542-548.	2.2	56