Alex Domling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7144790/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry. Chemical Reviews, 2006, 106, 17-89.	23.0	3,851
2	Multicomponent Reactions with Isocyanides. Angewandte Chemie - International Edition, 2000, 39, 3168-3210.	7.2	3,733
3	Chemistry and Biology Of Multicomponent Reactions. Chemical Reviews, 2012, 112, 3083-3135.	23.0	2,038
4	Multicomponent reactions in organic chemistry. Endeavour, 1994, 18, 115-122.	0.1	534
5	Recent advances in isocyanide-based multicomponent chemistry. Current Opinion in Chemical Biology, 2002, 6, 306-313.	2.8	455
6	The Chemistry of Isocyanides, their MultiComponent Reactions and their Libraries. Molecules, 2003, 8, 53-66.	1.7	404
7	Tetrazoles via Multicomponent Reactions. Chemical Reviews, 2019, 119, 1970-2042.	23.0	403
8	Structure of the Complex of Human Programmed Death 1, PD-1, and Its Ligand PD-L1. Structure, 2015, 23, 2341-2348.	1.6	399
9	Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1). Oncotarget, 2016, 7, 30323-30335.	0.8	297
10	Since 1995 the new chemistry of multicomponent reactions and their libraries, including their heir heterocyclic chemistry. Journal of Heterocyclic Chemistry, 2000, 37, 647-658.	1.4	256
11	Structural Biology of the Immune Checkpoint Receptor PD-1 and Its Ligands PD-L1/PD-L2. Structure, 2017, 25, 1163-1174.	1.6	253
12	Small-Molecule Inhibitors of the Programmed Cell Death-1/Programmed Death-Ligand 1 (PD-1/PD-L1) Interaction via Transiently Induced Protein States and Dimerization of PD-L1. Journal of Medicinal Chemistry, 2017, 60, 5857-5867.	2.9	242
13	Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget, 2017, 8, 72167-72181.	0.8	221
14	Structures of low molecular weight inhibitors bound to MDMX and MDM2 reveal new approaches for p53-MDMX/MDM2 antagonist drug discovery. Cell Cycle, 2010, 9, 1104-1111.	1.3	217
15	Multicomponent Reactions, Union of <scp>MCRs</scp> and Beyond. Chemical Record, 2015, 15, 981-996.	2.9	214
16	Covalent inhibitors: a rational approach to drug discovery. RSC Medicinal Chemistry, 2020, 11, 876-884.	1.7	187
17	The discovery of new isocyanide-based multi-component reactions. Current Opinion in Chemical Biology, 2000, 4, 318-323.	2.8	178
18	lsocyanide Based Multi Component Reactions in Combinatorial Chemistry. Combinatorial Chemistry and High Throughput Screening, 1998, 1, 1-22.	0.6	156

#	Article	IF	CITATIONS
19	The Structureâ€Based Design of Mdm2/Mdmx–p53 Inhibitors Gets Serious. Angewandte Chemie - International Edition, 2011, 50, 2680-2688.	7.2	150
20	The Gewald multicomponent reaction. Molecular Diversity, 2011, 15, 3-33.	2.1	145
21	Robust Generation of Lead Compounds for Protein–Protein Interactions by Computational and MCR Chemistry: p53/Hdm2 Antagonists. Angewandte Chemie - International Edition, 2010, 49, 5352-5356.	7.2	136
22	Small molecular weight protein–protein interaction antagonists—an insurmountable challenge?. Current Opinion in Chemical Biology, 2008, 12, 281-291.	2.8	133
23	Bioactive Macrocyclic Inhibitors of the PDâ€1/PDâ€L1 Immune Checkpoint. Angewandte Chemie - International Edition, 2017, 56, 13732-13735.	7.2	131
24	The Seven-Component Reaction**. Angewandte Chemie International Edition in English, 1993, 32, 563-564.	4.4	127
25	Massive Parallel Catalyst Screening:  Toward Asymmetric MCRs. Organic Letters, 2003, 5, 4021-4024.	2.4	126
26	Stapled Peptides Inhibitors: A New Window for Target Drug Discovery. Computational and Structural Biotechnology Journal, 2019, 17, 263-281.	1.9	118
27	Survivin Is a Therapeutic Target in Merkel Cell Carcinoma. Science Translational Medicine, 2012, 4, 133ra56.	5.8	117
28	Modern multicomponent reactions for better drug syntheses. Organic Chemistry Frontiers, 2014, 1, 834-837.	2.3	116
29	Biological evaluation of tubulysin A: a potential anticancer and antiangiogenic natural product. Biochemical Journal, 2006, 396, 235-242.	1.7	114
30	PROTACs– a game-changing technology. Expert Opinion on Drug Discovery, 2019, 14, 1255-1268.	2.5	113
31	Short and Diverse Route Toward Complex Natural Product-Like Macrocycles. Organic Letters, 2003, 5, 1047-1050.	2.4	109
32	Immune Checkpoint PDâ€1/PDâ€L1: Is There Life Beyond Antibodies?. Angewandte Chemie - International Edition, 2018, 57, 4840-4848.	7.2	109
33	Development of the Inhibitors That Target the PD-1/PD-L1 Interaction—A Brief Look at Progress on Small Molecules, Peptides and Macrocycles. Molecules, 2019, 24, 2071.	1.7	106
34	A patent review on PD-1/PD-L1 antagonists: small molecules, peptides, and macrocycles (2015-2018). Expert Opinion on Therapeutic Patents, 2018, 28, 665-678.	2.4	105
35	The Groebkeâ€Blackburnâ€Bienaymé Reaction. European Journal of Organic Chemistry, 2019, 2019, 7007-704	91.2	100
36	Total Synthesis of Tubulysin U and V. Angewandte Chemie - International Edition, 2006, 45, 7235-7239.	7.2	99

#	Article	IF	CITATIONS
37	Chemistry and Biology of SARS-CoV-2. CheM, 2020, 6, 1283-1295.	5.8	98
38	A Novel Three-Component Butenolide Synthesis. Organic Letters, 2001, 3, 2875-2878.	2.4	94
39	Enabling Large-Scale Design, Synthesis and Validation of Small Molecule Protein-Protein Antagonists. PLoS ONE, 2012, 7, e32839.	1.1	90
40	Inhibitors of programmed cell death 1 (PD-1): a patent review (2010-2015). Expert Opinion on Therapeutic Patents, 2016, 26, 973-977.	2.4	89
41	Cyanoacetamide MCR (III): Three-Component Gewald Reactions Revisited. ACS Combinatorial Science, 2010, 12, 111-118.	3.3	88
42	Piperazine Scaffolds via Isocyanide-Based Multicomponent Reactions. Synthesis, 2010, 2010, 2859-2883.	1.2	87
43	How To Design a Successful p53–MDM2/X Interaction Inhibitor: A Thorough Overview Based on Crystal Structures. ChemMedChem, 2016, 11, 757-772.	1.6	84
44	Efficient and Diverse Synthesis of Indole Derivatives. Journal of Organic Chemistry, 2009, 74, 6895-6898.	1.7	82
45	One-pot synthesis and biological evaluation of aspergillamides and analogues. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 1701-1705.	1.0	77
46	Efficient Multicomponent Reaction Synthesis of the Schistosomiasis Drug Praziquantel. Chemistry - A European Journal, 2010, 16, 12296-12298.	1.7	77
47	Strategies for the production of long-acting therapeutics and efficient drug delivery for cancer treatment. Biomedicine and Pharmacotherapy, 2019, 113, 108750.	2.5	73
48	Polycyclic indole alkaloid-type compounds by MCR. Chemical Communications, 2010, 46, 770-772.	2.2	71
49	The p53-MDM2/MDMX axis – A chemotype perspective. MedChemComm, 2011, 2, 246.	3.5	68
50	Arginase as a Potential Biomarker of Disease Progression: A Molecular Imaging Perspective. International Journal of Molecular Sciences, 2020, 21, 5291.	1.8	66
51	Praziquantel and Schistosomiasis. ChemMedChem, 2010, 5, 1420-1434.	1.6	64
52	Mdm2 and MdmX inhibitors for the treatment of cancer: a patent review (2011 – present). Expert Opinion on Therapeutic Patents, 2013, 23, 425-448.	2.4	64
53	New MCRs: The first 4-component reaction leading to 2,4-disubstituted thiazoles. Molecular Diversity, 2000, 6, 297-313.	2.1	63
54	1,4â€Thienodiazepineâ€2,5â€diones via MCR (I): Synthesis, Virtual Space and p53â€Mdm2 Activity. Chemical Biology and Drug Design, 2010, 76, 116-129.	1.5	63

#	Article	IF	CITATIONS
55	Efficient Isocyanide-less Isocyanide-Based Multicomponent Reactions. Organic Letters, 2015, 17, 2002-2005.	2.4	63
56	Programmed Deathâ€1: Therapeutic Success after More than 100â€Years of Cancer Immunotherapy. Angewandte Chemie - International Edition, 2014, 53, 2286-2288.	7.2	62
57	Update on targeted cancer therapies, single or in combination, and their fine tuning for precision medicine. Biomedicine and Pharmacotherapy, 2020, 125, 110009.	2.5	62
58	Highly Substituted Pyrrolidinones and Pyridones by 4-CR/2-CR Sequence. Organic Letters, 2004, 6, 39-42.	2.4	59
59	Polycyclic Compounds by Ugiâ^'Pictetâ^'Spengler Sequence. Journal of Organic Chemistry, 2011, 76, 637-644.	1.7	58
60	Multicomponent Synthesis of Diverse 1,4-Benzodiazepine Scaffolds. Organic Letters, 2012, 14, 5916-5919.	2.4	58
61	MCR Synthesis of Praziquantel Derivatives. Chemical Biology and Drug Design, 2012, 79, 470-477.	1.5	58
62	Isocyanide Multicomponent Reactions on Solid-Phase-Coupled DNA Oligonucleotides for Encoded Library Synthesis. Organic Letters, 2019, 21, 7238-7243.	2.4	58
63	Repurposing the HCV NS3–4A protease drug boceprevir as COVID-19 therapeutics. RSC Medicinal Chemistry, 2021, 12, 370-379.	1.7	58
64	MCR V: the Seven-Component Reaction Acta Chemica Scandinavica, 1998, 52, 107-113.	0.7	58
65	Transient Protein States in Designing Inhibitors of the MDM2-p53 Interaction. Structure, 2013, 21, 2143-2151.	1.6	57
66	Versatile Multicomponent Reaction Macrocycle Synthesis Using α-Isocyano-ω-carboxylic Acids. Organic Letters, 2015, 17, 4980-4983.	2.4	55
67	Isocyanide 2.0. Green Chemistry, 2020, 22, 6902-6911.	4.6	53
68	Simultaneous assembly of the β-lactam and thiazole moiety by a new multicomponent reaction. Tetrahedron Letters, 2002, 43, 6897-6901.	0.7	52
69	Cyanoacetamide Multicomponent Reaction (I): Parallel Synthesis Of Cyanoacetamides. ACS Combinatorial Science, 2009, 11, 920-927.	3.3	52
70	Parallel Synthesis of Arrays of Amino-Acid-Derived Isocyanoamides Useful As Starting Materials in IMCR. ACS Combinatorial Science, 2006, 8, 872-880.	3.3	51
71	Design and modular parallel synthesis of a MCR derived α-helix mimetic protein–protein interaction inhibitor scaffold. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 1740-1743.	1.0	51
72	Triglyceride profiling in adipose tissues from obese insulin sensitive, insulin resistant and type 2 diabetes mellitus individuals. Journal of Translational Medicine, 2018, 16, 175.	1.8	51

#	Article	IF	CITATIONS
73	Efficient Assembly of Iminodicarboxamides by a "Truly―Fourâ€Component Reaction. Angewandte Chemie - International Edition, 2012, 51, 10280-10283.	7.2	50
74	Exhaustive Fluorine Scanning toward Potent p53–Mdm2 Antagonists. ChemMedChem, 2012, 7, 49-52.	1.6	50
75	Tritylamine as an Ammonia Surrogate in the Ugi Tetrazole Synthesis. Organic Letters, 2013, 15, 639-641.	2.4	50
76	TEAD–YAP Interaction Inhibitors and MDM2 Binders from DNAâ€Encoded Indoleâ€Focused Ugi Peptidomimetics. Angewandte Chemie - International Edition, 2020, 59, 20338-20342.	7.2	50
77	Atorvastatin (Lipitor) by MCR. ACS Medicinal Chemistry Letters, 2019, 10, 389-392.	1.3	49
78	Efficient Synthesis Of Arrays Of Amino Acid Derived Ugi Products With Subsequent Amidation. ACS Combinatorial Science, 2009, 11, 403-409.	3.3	46
79	An efficient Passerini tetrazole reaction (PT-3CR). Green Chemistry, 2016, 18, 3718-3721.	4.6	44
80	Die Siebenkomponentenreaktion. Angewandte Chemie, 1993, 105, 634-635.	1.6	42
81	Myxobacterial epothilones and tubulysins as promising anticancer agents. Molecular Diversity, 2005, 9, 141-147.	2.1	42
82	Terphenyl-Based Small-Molecule Inhibitors of Programmed Cell Death-1/Programmed Death-Ligand 1 Protein–Protein Interaction. Journal of Medicinal Chemistry, 2021, 64, 11614-11636.	2.9	42
83	Convergent multicomponent assembly of 2-acyloxymethyl thiazoles. Tetrahedron Letters, 2003, 44, 8947-8950.	0.7	41
84	Rational Development of a Potent 15-Lipoxygenase-1 Inhibitor with <i>in Vitro</i> and <i>ex Vivo</i> Anti-inflammatory Properties. Journal of Medicinal Chemistry, 2015, 58, 7850-7862.	2.9	40
85	Acoustic Droplet Ejection Enabled Automated Reaction Scouting. ACS Central Science, 2019, 5, 451-457.	5.3	40
86	Various cyclization scaffolds by a truly Ugi 4-CR. Organic and Biomolecular Chemistry, 2013, 11, 4792.	1.5	38
87	Discovery of Highly Potent p53-MDM2 Antagonists and Structural Basis for Anti-Acute Myeloid Leukemia Activities. ACS Chemical Biology, 2014, 9, 802-811.	1.6	38
88	Artificial Macrocycles by Ugi Reaction and Passerini Ring Closure. Journal of Organic Chemistry, 2016, 81, 8789-8795.	1.7	37
89	Twoâ€Step Synthesis of Complex Artificial Macrocyclic Compounds. Angewandte Chemie - International Edition, 2017, 56, 10725-10729.	7.2	37
90	P53 Mdm2 Inhibitors. Current Pharmaceutical Design, 2012, 18, 4668-4678.	0.9	36

#	Article	IF	CITATIONS
91	Convergent Three omponent Tetrazole Synthesis. European Journal of Organic Chemistry, 2016, 2016, 2383-2387.	1.2	36
92	Automated and accelerated synthesis of indole derivatives on a nano-scale. Green Chemistry, 2019, 21, 225-232.	4.6	36
93	Molecular libraries in liquid phase via UGI-MCR. Research on Chemical Intermediates, 1996, 22, 625-644.	1.3	35
94	De Novo Assembly of Highly Substituted Morpholines and Piperazines. Organic Letters, 2017, 19, 642-645.	2.4	35
95	Rapid and Efficient Hydrophilicity Tuning of p53/mdm2 Antagonists. ACS Combinatorial Science, 2009, 11, 631-639.	3.3	34
96	Cyanoacetamides (IV): Versatile One-Pot Route to 2-Quinoline-3-carboxamides. ACS Combinatorial Science, 2012, 14, 316-322.	3.8	34
97	Two-Step Macrocycle Synthesis by Classical Ugi Reaction. Journal of Organic Chemistry, 2018, 83, 1441-1447.	1.7	34
98	Efficient C2 functionalisation of 2H-2-imidazolines. Organic and Biomolecular Chemistry, 2008, 6, 130-137.	1.5	33
99	Molecular hybridization design and synthesis of novel spirooxindole-based MDM2 inhibitors endowed with BCL2 signaling attenuation; a step towards the next generation p53 activators. Bioorganic Chemistry, 2021, 117, 105427.	2.0	33
100	1-Isocyanomethylbenzotriazole and 2,2,4,4-tetramethylbutylisocyanide—cleavable isocyanides useful for the preparation of α-aminomethyl tetrazoles. Tetrahedron Letters, 2006, 47, 4289-4291.	0.7	32
101	Robust NMR Screening for Lead Compounds Using Tryptophan-Containing Proteins. Journal of the American Chemical Society, 2009, 131, 7500-7501.	6.6	32
102	2,3′-Bis(1′H-indole) heterocycles: New p53/MDM2/MDMX antagonists. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5661-5666.	1.0	32
103	Concise Synthesis of Tetrazole–Ketopiperazines by Two Consecutive Ugi Reactions. European Journal of Organic Chemistry, 2015, 2015, 51-55.	1.2	32
104	αâ€Amino Acidâ€Isosteric αâ€Amino Tetrazoles. Chemistry - A European Journal, 2016, 22, 3009-3018.	1.7	32
105	The Catalytic Enantioselective Ugi Fourâ€Component Reactions. Angewandte Chemie - International Edition, 2018, 57, 16266-16268.	7.2	32
106	Novel anti-tuberculosis agents from MCR libraries. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5483-5486.	1.0	31
107	A Unique Mdm2-Binding Mode of the 3-Pyrrolin-2-one- and 2-Furanone-Based Antagonists of the p53-Mdm2 Interaction. ACS Chemical Biology, 2016, 11, 3310-3318.	1.6	31
108	A new 5,6-dihydro-2H-1,3-oxazine synthesis via Asigner-type condensation. Tetrahedron, 1993, 49, 9495-9500.	1.0	30

#	Article	IF	CITATIONS
109	Design of a novel thiophene inhibitor of 15-lipoxygenase-1 with both anti-inflammatory and neuroprotective properties. European Journal of Medicinal Chemistry, 2016, 122, 786-801.	2.6	30
110	Rational design and synthesis of 1,5-disubstituted tetrazoles as potent inhibitors of the MDM2-p53 interaction. European Journal of Medicinal Chemistry, 2017, 126, 384-407.	2.6	30
111	Rapid approach to complex boronic acids. Science Advances, 2019, 5, eaaw4607.	4.7	30
112	Multicomponent Reactions: "Kinderleicht― Journal of Chemical Education, 2020, 97, 3739-3745.	1.1	30
113	Design, Synthesis, and Biological Evaluation of Imidazopyridines as PD-1/PD-L1 Antagonists. ACS Medicinal Chemistry Letters, 2021, 12, 768-773.	1.3	30
114	Cyanamide in isocyanide-based MCRs. Tetrahedron Letters, 2006, 47, 1745-1747.	0.7	29
115	(â^')-Bacillamide C: the convergent approach. Organic and Biomolecular Chemistry, 2010, 8, 529-532.	1.5	29
116	Screening Multicomponent Reactions for X-Linked Inhibitor of Apoptosis-Baculoviral Inhibitor of Apoptosis Protein Repeats Domain Binder. Journal of Medicinal Chemistry, 2011, 54, 890-900.	2.9	29
117	Tricycles by a New Ugi Variation and Pictet–Spengler Reaction in One Pot. Chemistry - A European Journal, 2013, 19, 8048-8052.	1.7	29
118	1,4,5-Trisubstituted Imidazole-Based p53–MDM2/MDMX Antagonists with Aliphatic Linkers for Conjugation with Biological Carriers. Journal of Medicinal Chemistry, 2017, 60, 4234-4244.	2.9	29
119	<scp>A</scp> nchor <scp>Q</scp> uery: <scp>R</scp> apid online virtual screening for smallâ€molecule protein–protein interaction inhibitors. Protein Science, 2018, 27, 229-232.	3.1	29
120	Multicomponent Peptide Stapling as a Diversityâ€Driven Tool for the Development of Inhibitors of Protein–Protein Interactions. Angewandte Chemie - International Edition, 2020, 59, 5235-5241.	7.2	29
121	A novel method to highly versatile monomeric PNA building blocks by multi component reactions. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 2871-2874.	1.0	28
122	Leuckart–Wallach Route Toward Isocyanides and Some Applications. ACS Combinatorial Science, 2015, 17, 493-499.	3.8	28
123	Artificial Macrocycles as Potent p53–MDM2 Inhibitors. ACS Medicinal Chemistry Letters, 2017, 8, 1025-1030.	1.3	28
124	Novel nonpeptidic inhibitors of HIV-1 protease obtained via a new multicomponent chemistry strategy. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3121-3125.	1.0	26
125	MCR synthesis of a tetracyclic tetrazole scaffold. Bioorganic and Medicinal Chemistry, 2015, 23, 2699-2715.	1.4	26
126	Unconventional Passerini Reaction toward α-Aminoxy-amides. Organic Letters, 2016, 18, 6396-6399.	2.4	26

Alex Domling

#	Article	IF	CITATIONS
127	<i>N</i> -Hydroxyimide Ugi Reaction toward α-Hydrazino Amides. Organic Letters, 2017, 19, 1228-1231.	2.4	26
128	A Systematic Protein Refolding Screen Method using the DGR Approach Reveals that Time and Secondary TSA are Essential Variables. Scientific Reports, 2017, 7, 9355.	1.6	26
129	Theβ-Lactam-Nucleoside Chimera. Angewandte Chemie International Edition in English, 1995, 34, 2238-2239.	4.4	25
130	Employment of a steroidal aldehyde in a new synthesis of β-lactam derivatives. Tetrahedron, 1995, 51, 9519-9522.	1.0	25
131	1,4â€Thienodiazepineâ€2,5â€diones via MCR (II): Scaffold Hopping by Gewald and Ugiâ€Deprotectionâ€Cyclizati Strategy. Chemical Biology and Drug Design, 2010, 76, 130-141.	on 1.5	25
132	Hydrazine in the Ugi Tetrazole Reaction. Synthesis, 2016, 48, 1122-1130.	1.2	25
133	Multicomponent reaction $\hat{a} \in \hat{a}$ derived covalent inhibitor space. Science Advances, 2021, 7, .	4.7	24
134	A Universal Isocyanide for Diverse Heterocycle Syntheses. Organic Letters, 2014, 16, 5736-5739.	2.4	23
135	Concise Synthesis of Tetrazole Macrocycle. Organic Letters, 2017, 19, 5078-5081.	2.4	23
136	Macrocycles: MCR synthesis and applications in drug discovery. Drug Discovery Today: Technologies, 2018, 29, 11-17.	4.0	23
137	Artificial Macrocycles. Synlett, 2018, 29, 1136-1151.	1.0	23
138	1,3,4-Oxadiazoles by Ugi-Tetrazole and Huisgen Reaction. Organic Letters, 2019, 21, 7320-7323.	2.4	23
139	The tale of proteolysis targeting chimeras (PROTACs) for Leucineâ€Rich Repeat Kinase 2 (LRRK2). ChemMedChem, 2021, 16, 959-965.	1.6	23
140	TNF-α: The shape of small molecules to come?. Drug Discovery Today, 2022, 27, 3-7.	3.2	23
141	A new and efficient multicomponent solid-phase synthesis of 2-acylaminomethylthiazoles. Tetrahedron Letters, 2003, 44, 3679-3682.	0.7	22
142	Discovery of a Potent Allosteric Kinase Modulator by Combining Computational and Synthetic Methods. Angewandte Chemie - International Edition, 2015, 54, 13933-13936.	7.2	22
143	Multicomponent Reaction Based Synthesis of 1-Tetrazolylimidazo[1,5- <i>a</i>]pyridines. Organic Letters, 2018, 20, 3871-3874.	2.4	22
144	Synthetic Peptides That Antagonize the Angiotensin-Converting Enzyme-2 (ACE-2) Interaction with SARS-CoV-2 Receptor Binding Spike Protein. Journal of Medicinal Chemistry, 2022, 65, 2836-2847.	2.9	22

#	Article	IF	CITATIONS
145	Design, Synthesis, Chemical and Biochemical Insights Into Novel Hybrid Spirooxindole-Based p53-MDM2 Inhibitors With Potential Bcl2 Signaling Attenuation. Frontiers in Chemistry, 2021, 9, 735236.	1.8	22
146	Polymer-Bound 3-N,N-(Dimethylamino)-2-isocyanoacrylate for the Synthesis of Thiazoles via a Multicomponent Reaction. Synlett, 2003, 2003, 2410-2412.	1.0	21
147	Total Synthesis of Tubulysinâ€U and V. Angewandte Chemie - International Edition, 2007, 46, 2347-2348.	7.2	21
148	Scaffold hopping <i>via</i> ANCHOR.QUERY: β-lactams as potent p53-MDM2 antagonists. MedChemComm, 2017, 8, 1046-1052.	3.5	21
149	Novel Compounds Targeting the RNA-Binding Protein HuR. Structure-Based Design, Synthesis, and Interaction Studies. ACS Medicinal Chemistry Letters, 2019, 10, 615-620.	1.3	21
150	Production of "biobetter―glucarpidase variants to improve drug detoxification and antibody directed enzyme prodrug therapy for cancer treatment. European Journal of Pharmaceutical Sciences, 2019, 127, 79-91.	1.9	21
151	Benzimidazole-2-one: A novel anchoring principle for antagonizing p53-Mdm2. Bioorganic and Medicinal Chemistry, 2013, 21, 3982-3995.	1.4	20
152	Towards a facile and convenient synthesis of highly functionalized indole derivatives based on multi-component reactions. Organic and Biomolecular Chemistry, 2014, 12, 1649-1651.	1.5	20
153	Artificial macrocycles as IL-17A/IL-17RA antagonists. MedChemComm, 2018, 9, 22-26.	3.5	20
154	Tubulysin Synthesis Featuring Stereoselective Catalysis and Highly Convergent Multicomponent Assembly. Organic Letters, 2020, 22, 5396-5400.	2.4	20
155	Nanoscale, automated, high throughput synthesis and screening for the accelerated discovery of protein modifiers. RSC Medicinal Chemistry, 2021, 12, 809-818.	1.7	20
156	The formation of β-lactam derivatives and a C3-symmetrical heterocycle from 5,6-dihydro-2H-1,3-oxazines. Tetrahedron, 1995, 51, 139-144.	1.0	19
157	1-Isocyano-2-dimethylamino-alkenes: Versatile Reagents in Diversity-Oriented Organic Synthesis. Synthesis, 2005, 2005, 662-667.	1.2	19
158	Desosamine in multicomponent reactions. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 6360-6362.	1.0	19
159	Application of cyclic ketones in MCR: Ugi/amide coupling based synthesis of fused tetrazolo[1,5-a][1,4]benzodiazepines. Tetrahedron Letters, 2014, 55, 3263-3266.	0.7	19
160	Cleavable β-Cyanoethyl Isocyanide in the Ugi Tetrazole Reaction. Organic Letters, 2016, 18, 4762-4765.	2.4	19
161	Two Cycles with One Catch: Hydrazine in Ugi 4-CR and Its Postcyclizations. ACS Combinatorial Science, 2017, 19, 193-198.	3.8	19
162	Combining Highâ€Throughput Synthesis and Highâ€Throughput Protein Crystallography for Accelerated Hit Identification. Angewandte Chemie - International Edition, 2021, 60, 18231-18239.	7.2	19

#	Article	IF	CITATIONS
163	Design of a Versatile Multicomponent Reaction Leading to 2â€aminoâ€5â€ketoaryl pyrroles. Chemical Biology and Drug Design, 2010, 75, 277-283.	1.5	18
164	Leuckart–Wallach Approach to Sugar Isocyanides and Its IMCRs. Synthesis, 2015, 47, 2407-2413.	1.2	18
165	Sulfur-Switch Ugi Reaction for Macrocyclic Disulfide-Bridged Peptidomimetics. Organic Letters, 2017, 19, 3195-3198.	2.4	18
166	Diverse Isoquinoline Scaffolds by Ugi/Pomeranz–Fritsch and Ugi/Schlittler–Müller Reactions. Organic Letters, 2019, 21, 3533-3537.	2.4	18
167	Editorial: Isocyanide-Based Multicomponent Reactions. Frontiers in Chemistry, 2019, 7, 918.	1.8	18
168	Fragment-Based Library Generation for the Discovery of a Peptidomimetic p53-Mdm4 Inhibitor. ACS Combinatorial Science, 2014, 16, 393-396.	3.8	17
169	Ammonia-Promoted One-Pot Tetrazolopiperidinone Synthesis by Ugi Reaction. ACS Combinatorial Science, 2017, 19, 343-350.	3.8	17
170	With unprotected amino acids to tetrazolo peptidomimetics. Chemical Communications, 2017, 53, 8549-8552.	2.2	17
171	Application of Silver Nanoparticles in the Multicomponent Reaction Domain: A Combined Catalytic Reduction Methodology to Efficiently Access Potential Hypertension or Inflammation Inhibitors. ACS Omega, 2018, 3, 16005-16013.	1.6	17
172	MCR Scaffolds Get Hotter with 18F-Labeling. Molecules, 2019, 24, 1327.	1.7	17
173	Automated, Accelerated Nanoscale Synthesis of Iminopyrrolidines. Angewandte Chemie - International Edition, 2020, 59, 12423-12427.	7.2	17
174	Parallel synthesis of arrays of 1,4,5-trisubstituted 1-(4-piperidyl)-imidazoles by IMCR: A novel class of aspartyl protease inhibitors. Arkivoc, 2007, 2007, 99-109.	0.3	17
175	New method for the preparation of solid-phase bound isocyanocarboxylic acids and Ugi reactions therewith. Tetrahedron Letters, 2003, 44, 7015-7018.	0.7	16
176	The Discovery of New Isocyanide-Based Multicomponent Reactions. , 2005, , 76-94.		16
177	Oneâ€Pot Synthesis of Highly Functionalized Seleno Amino Acid Derivatives. Chemical Biology and Drug Design, 2009, 74, 302-308.	1.5	16
178	Ugi Multicomponent Reaction Based Synthesis of Medium-Sized Rings. Organic Letters, 2017, 19, 6176-6179.	2.4	16
179	Isolation and molecular characterization of novel glucarpidases: Enzymes to improve the antibody directed enzyme pro-drug therapy for cancer treatment. PLoS ONE, 2018, 13, e0196254.	1.1	16
180	A Novel Concept for the Combinatorial Synthesis of Peptide Nucleic Acids Nucleosides & Nucleotides, 1998, 17, 1667-1670.	0.5	15

#	Article	IF	CITATIONS
181	Versatile Protecting-Group Free Tetrazolomethane Amine Synthesis by Ugi Reaction. ACS Combinatorial Science, 2016, 18, 170-175.	3.8	15
182	Synthesis of Highly Substituted Imidazole Uracil Containing Molecules via Ugi-4CR and Passerini-3CR. ACS Combinatorial Science, 2018, 20, 192-196.	3.8	15
183	Library-to-Library Synthesis of Highly Substituted α-Aminomethyl Tetrazoles via Ugi Reaction. ACS Combinatorial Science, 2018, 20, 70-74.	3.8	15
184	Glutarimide Alkaloids Through Multicomponent Reaction Chemistry. European Journal of Organic Chemistry, 2018, 2018, 6714-6719.	1.2	15
185	Late-Stage Copper-Catalyzed Radiofluorination of an Arylboronic Ester Derivative of Atorvastatin. Molecules, 2019, 24, 4210.	1.7	15
186	2,5-Dihydro-4-hydroxymethyl-1,3-oxazoles by Asinger condensation. Tetrahedron, 1995, 51, 755-760.	1.0	14
187	Pd-Catalyzed de Novo Assembly of Diversely Substituted Indole-Fused Polyheterocycles. Journal of Organic Chemistry, 2019, 84, 12148-12156.	1.7	14
188	Discovery Of Pyrroloimidazoles As Agents Stimulating Neurite Outgrowth. QSAR and Combinatorial Science, 2006, 25, 527-535.	1.5	13
189	One-pot multicomponent synthesis of two novel thiolactone scaffolds. Molecular Diversity, 2010, 14, 479-491.	2.1	13
190	One-Pot Synthesis of 2-Amino-indole-3-carboxamide and Analogous. ACS Combinatorial Science, 2011, 13, 140-146.	3.8	13
191	Bioactive Macrocyclic Inhibitors of the PDâ€1/PDâ€L1 Immune Checkpoint. Angewandte Chemie, 2017, 129, 13920-13923.	1.6	13
192	A fluorinated indoleâ€based <scp>MDM</scp> 2 antagonist selectively inhibits the growth of p53 ^{wt} osteosarcoma cells. FEBS Journal, 2019, 286, 1360-1374.	2.2	13
193	Highly Stereoselective Ugi/Pictet–Spengler Sequence. Journal of Organic Chemistry, 2022, 87, 7085-7096.	1.7	13
194	Rapid Combinatorial Access to Macrocyclic Ansapeptoids and Ansapeptides with Natural-Product-like Core Structures. Synthesis, 2006, 2006, 3997-4004.	1.2	12
195	Isosteric exchange of the acylsulfonamide moiety in Abbott's Bcl-XL protein interaction antagonist. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4115-4117.	1.0	12
196	Isocyanides as Influenza A Virus Subtype H5N1 Wildâ€Type M2 Channel Inhibitors. ChemMedChem, 2015, 10 1837-1845.	^{),} 1.6	12
197	Cysteine Isocyanide in Multicomponent Reaction: Synthesis of Peptido-Mimetic 1,3-Azoles. Journal of Organic Chemistry, 2017, 82, 9585-9594.	1.7	12
198	Diastereoselective one pot five-component reaction toward 4-(tetrazole)-1,3-oxazinanes. RSC Advances, 2017, 7, 49995-49998.	1.7	12

#	Article	IF	CITATIONS
199	Identification of Hsp70 modulators through modeling of the substrate binding domain. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3828-3831.	1.0	11
200	Copper-Catalyzed Modular Assembly of Polyheterocycles. Journal of Organic Chemistry, 2020, 85, 9915-9927.	1.7	11
201	New End-On Thiolactone Scaffold by an Isocyanide-Based Multicomponent Reaction. Heterocycles, 2007, 73, 177.	0.4	11
202	<i>β</i> ‣actamâ€Nucleosidâ€ChimÃæ. Angewandte Chemie, 1995, 107, 2465-2467.	1.6	10
203	MCR III1. Multicomponent Reactions and Their Libraries, a New Type of Organic Chemistry of the Isocyanides and Phosphorus Derivatives Nucleosides & Nucleotides, 1997, 16, 843-848.	0.5	10
204	A Novel Δ-Thiolactone Scaffold by a Versatile Intramolecular Multicomponent Reaction. Heterocycles, 2009, 77, 731.	0.4	10
205	The Piperazine Space in Isocyanide-based MCR Chemistry. Topics in Heterocyclic Chemistry, 2010, , 85-127.	0.2	10
206	p53–MDM2 and MDMX Antagonists. Annual Reports in Medicinal Chemistry, 2014, 49, 167-187.	0.5	10
207	Gdâ€TEMDO: Design, Synthesis, and MRI Application. Chemistry - A European Journal, 2016, 22, 7352-7356.	1.7	10
208	2â€Nitrobenzyl Isocyanide as a Universal Convertible Isocyanide. Asian Journal of Organic Chemistry, 2017, 6, 798-801.	1.3	10
209	β arbolinone Analogues from the Ugi Silver Mine. European Journal of Organic Chemistry, 2018, 2018, 3139-3143.	1.2	10
210	Design of indole- and MCR-based macrocycles as p53-MDM2 antagonists. Beilstein Journal of Organic Chemistry, 2019, 15, 513-520.	1.3	10
211	TEAD–YAP Interaction Inhibitors and MDM2 Binders from DNAâ€Encoded Indoleâ€Focused Ugi Peptidomimetics. Angewandte Chemie, 2020, 132, 20518-20522.	1.6	10
212	Sustainability by design: automated nanoscale 2,3,4-trisubstituted quinazoline diversity. Green Chemistry, 2020, 22, 2459-2467.	4.6	10
213	Isoquinolone-4-Carboxylic Acids by Ammonia-Ugi-4CR and Copper-Catalyzed Domino Reaction. Journal of Organic Chemistry, 2021, 86, 9771-9780.	1.7	10
214	Combinatorial Generation of Nucleobase Libraries by MCR. Nucleosides & Nucleotides, 1997, 16, 1753-1756.	0.5	9
215	Towards erythropoietin mimicking small molecules. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 379-384.	1.0	9
216	Synthesis and Enantiomeric Separation of a Novel Spiroketal Derivative: A Potent Human Telomerase Inhibitor with High in Vitro Anticancer Activity. Journal of Medicinal Chemistry, 2016, 59, 9140-9149.	2.9	9

#	Article	IF	CITATIONS
217	Two‣tep Synthesis of Complex Artificial Macrocyclic Compounds. Angewandte Chemie, 2017, 129, 10865-10869.	1.6	9
218	Hitting on the move: Targeting intrinsically disordered protein states of the MDM2-p53 interaction. European Journal of Medicinal Chemistry, 2019, 182, 111588.	2.6	9
219	Identification of potential antivirulence agents by substitution-oriented screening for inhibitors of Streptococcus pyogenes sortase A. European Journal of Medicinal Chemistry, 2019, 161, 93-100.	2.6	9
220	A multicomponent tetrazolo indole synthesis. Chemical Communications, 2021, 57, 6652-6655.	2.2	9
221	Structural dynamics in the evolution of a bilobed protein scaffold. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
222	Small Molecule Inhibitors of Programmed Cell Death Ligand 1 (PD-L1): A Patent Review (2019–2021). Expert Opinion on Therapeutic Patents, 2022, 32, 575-589.	2.4	9
223	Synthesis of Tunable Fluorescent Imidazole-Fused Heterocycle Dimers. Organic Letters, 2022, 24, 5014-5017.	2.4	9
224	Development of a robust cell-based high-throughput screening assay to identify targets of HIV-1 viral protein R dimerization. Drug Design, Development and Therapy, 2013, 7, 403.	2.0	8
225	Ugi 4-CR synthesis of Î ³ - and δ-lactams providing new access to diverse enzyme interactions, a PDB analysis. MedChemComm, 2014, 5, 949-952.	3.5	8
226	Discovery of chromenes as inhibitors of macrophage migration inhibitory factor. Bioorganic and Medicinal Chemistry, 2018, 26, 999-1005.	1.4	8
227	Sequential Multicomponent Synthesis of 2â€(Imidazo[1,5â€Î±]pyridinâ€1â€yl)â€1,3,4â€Oxadiazoles. European Jo of Organic Chemistry, 2019, 2019, 2029-2034.	ournal 1.2	8
228	Benchmark of Generic Shapes for Macrocycles. Journal of Chemical Information and Modeling, 2020, 60, 6298-6313.	2.5	8
229	Diaminoimidazopyrimidines: Access via the Groebke–Blackburn–Bienaymé Reaction and Structural Data Mining. European Journal of Organic Chemistry, 2020, 2020, 5601-5605.	1.2	8
230	[¹⁸ F]Atorvastatin Pharmacokinetics and Biodistribution in Healthy Female and Male Rats. Molecular Pharmaceutics, 2021, 18, 3378-3386.	2.3	8
231	Editorial. Molecular Diversity, 2011, 15, 1-2.	2.1	7
232	Jetzt wird es ernst: strukturbasiertes Design von Mdm2/Mdmxâ€p53â€Inhibitoren. Angewandte Chemie, 2011, 123, 2732-2741.	1.6	7
233	Easy Synthesis of Two Positional Isomeric Tetrazole Libraries. Synthesis, 2016, 48, 3701-3712.	1.2	7
234	The relevance of K i calculation for bi-substrate enzymes illustrated by kinetic evaluation of a novel lysine (K) acetyltransferase 8 inhibitor. European Journal of Medicinal Chemistry, 2017, 136, 480-486.	2.6	7

#	Article	IF	CITATIONS
235	Photoactivation provides a mechanistic explanation for pan-assay interference behaviour of 2-aminopyrroles in lipoxygenase inhibition. European Journal of Medicinal Chemistry, 2017, 139, 633-643.	2.6	7
236	Isocyanideâ€Based Multicomponent Reactions of Free Phenylboronic Acids. European Journal of Organic Chemistry, 2019, 2019, 6132-6137.	1.2	7
237	Molecular Target Validation of Aspartate Transcarbamoylase from <i>Plasmodium falciparum</i> by Torin 2. ACS Infectious Diseases, 2020, 6, 986-999.	1.8	7
238	Pharmacological Screening Identifies SHK242 and SHK277 as Novel Arginase Inhibitors with Efficacy against Allergen-Induced Airway Narrowing In Vitro and In Vivo. Journal of Pharmacology and Experimental Therapeutics, 2020, 374, 62-73.	1.3	7
239	Scaffolding-Induced Property Modulation of Chemical Space. ACS Combinatorial Science, 2020, 22, 356-360.	3.8	7
240	Hot, hotter, hottest. Cell Cycle, 2009, 8, 1112-1113.	1.3	6
241	Concise Synthesis of Macrocycles by Multicomponent Reactions. Synthesis, 2018, 50, 1027-1038.	1.2	6
242	Studies on vascular response to full superantigens and superantigen derived peptides: Possible production of novel superantigen variants with less vasodilation effect for tolerable cancer immunotherapy. Biomedicine and Pharmacotherapy, 2019, 115, 108905.	2.5	6
243	Production of "biobetter―variants of glucarpidase with enhanced enzyme activity. Biomedicine and Pharmacotherapy, 2019, 112, 108725.	2.5	6
244	â€~Atypical Ugi' tetrazoles. Chemical Communications, 2020, 56, 1799-1802.	2.2	6
245	Multicomponent Peptide Stapling as a Diversityâ€Driven Tool for the Development of Inhibitors of Protein–Protein Interactions. Angewandte Chemie, 2020, 132, 5273-5279.	1.6	6
246	Fluorene-Based Multicomponent Reactions. Synlett, 2022, 33, 155-160.	1.0	6
247	Direct Amination of αâ€Hydroxy Amides. Asian Journal of Organic Chemistry, 2017, 6, 981-983.	1.3	5
248	Die katalytische enantioselektive Ugiâ€Vierkomponentenreaktionen. Angewandte Chemie, 2018, 130, 16502-16504.	1.6	5
249	Optimized Inhibitors of MDM2 via an Attempted Proteinâ€Templated Reductive Amination. ChemMedChem, 2020, 15, 370-375.	1.6	5
250	An Ugi Reaction/Intramolecular Cyclization/Oxidation Cascade towards Tetrazole-Linked Dibenzoxazepines. Synthesis, 2021, 53, 1980-1988.	1.2	5
251	Biphenyl Ether Analogs Containing Pomalidomide as Small-Molecule Inhibitors of the Programmed Cell Death-Ligand 1 Interaction. Molecules, 2022, 27, 3454.	1.7	5
252	New macrocycles with potent antituberculosis activity accessed by one-pot multicomponent reactions. Chemistry of Heterocyclic Compounds, 2013, 49, 849-859.	0.6	4

#	Article	IF	CITATIONS
253	(3+2) Annulation of Amidinothioureas with Binucleophile: Synthesis and Antimicrobial Activity of 3â€Phenylaminoâ€5â€aryl/alkylâ€1,2,4â€oxadiazole Derivatives. Journal of Heterocyclic Chemistry, 2014, 51, 1752-1756.	1.4	4
254	A Facile Diversityâ€Oriented Multicomponent Oneâ€Pot Synthesis of 3â€Aminoâ€6,7â€dihydrobenzo[<i>c</i>]thiophenâ€4(5 <i>H</i>)â€one Derivatives from αâ€Oxoâ€ <i>N</i> , <i>Acetal. Journal of Heterocyclic Chemistry, 2014, 51, E358.</i>	Sĸ₄>â€ke	et e ne
255	Focusing on shared subpockets – new developments in fragment-based drug discovery. Expert Opinion on Drug Discovery, 2015, 10, 1179-1187.	2.5	4
256	Facile Synthesis of N-Substituted Benzimidazoles. Synthesis, 2016, 48, 3713-3718.	1.2	4
257	Identification of a non-competitive inhibitor of Plasmodium falciparum aspartate transcarbamoylase. Biochemical and Biophysical Research Communications, 2018, 497, 835-842.	1.0	4
258	Der Immuncheckpoint PDâ€1/PDâ€L1: Gibt es Therapieoptionen jenseits der Antikörper?. Angewandte Chemie, 2018, 130, 4932-4940.	1.6	4
259	Oligomeric protein interference validates druggability of aspartate interconversion in Plasmodium falciparum. MicrobiologyOpen, 2019, 8, e779.	1.2	4
260	Rapid Discovery of Aspartyl Protease Inhibitors Using an Anchoring Approach. ChemMedChem, 2020, 15, 680-684.	1.6	4
261	In Silico Design and Selection of New Tetrahydroisoquinoline-Based CD44 Antagonist Candidates. Molecules, 2021, 26, 1877.	1.7	4
262	S _N Ar Isocyanide Diversification. European Journal of Organic Chemistry, 2022, 2022, .	1.2	4
263	Dibenzothiazepine Based MCR Chemistry. European Journal of Organic Chemistry, 2022, 2022, .	1.2	4
264	Mercury(II) Chlorideâ€Mediated Desulphurization of Amidinothioureas: Synthesis and Antimicrobial Activity of 3â€Aminoâ€1,2,4â€ŧriazole Derivatives. Journal of Heterocyclic Chemistry, 2014, 51, 1883-1887.	1.4	3
265	[18F]Atorvastatin: synthesis of a potential molecular imaging tool for the assessment of statin-related mechanisms of action. EJNMMI Research, 2020, 10, 34.	1.1	3
266	STXBP6, reciprocally regulated with autophagy, reduces triple negative breast cancer aggressiveness. Clinical and Translational Medicine, 2020, 10, e147.	1.7	3
267	Automated, Accelerated Nanoscale Synthesis of Iminopyrrolidines. Angewandte Chemie, 2020, 132, 12523-12527.	1.6	3
268	Reverse Docking for the Identification of Molecular Targets of Anticancer Compounds. Methods in Molecular Biology, 2021, 2174, 31-43.	0.4	3
269	Design, synthesis and biological evaluation of 1,5-disubstituted α-amino tetrazole derivatives as non-covalent inflammasome-caspase-1 complex inhibitors with potential application against immune and inflammatory disorders. European Journal of Medicinal Chemistry, 2022, 229, 114002.	2.6	3
270	New Synthesis and Structure Determination of 13-Aza-4,4,8,8,12,12-hexamethyl-2,6,10-trioxatricyclo[7,3,1,0 ^{5,13}]tridecane. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1995, 50, 667-670.	0.3	2

#	Article	IF	CITATIONS
271	In vitro cytotoxicity and in vivo efficacy, pharmacokinetics, and metabolism of pyrazole-based small molecule inhibitors of Mdm2/4–p53 interaction. Cancer Chemotherapy and Pharmacology, 2015, 76, 287-299.	1.1	2
272	Structure and Reactivity of Glycosyl Isocyanides. European Journal of Organic Chemistry, 2019, 2019, 50-55.	1.2	2
273	Fourfold symmetric MCR's <i>via</i> the tetraisocyanide 1,3-diisocyano-2,2-bis(isocyanomethyl)propane. Chemical Communications, 2020, 56, 10662-10665.	2.2	2
274	A fragment-based approach identifies an allosteric pocket that impacts malate dehydrogenase activity. Communications Biology, 2021, 4, 949.	2.0	2
275	Supported Gold Nanoparticle-Catalyzed Selective Reduction of Multifunctional, Aromatic Nitro Precursors into Amines and Synthesis of 3,4-Dihydroquinoxalin-2-Ones. Molecules, 2022, 27, 4395.	1.7	2
276	Recent Advances in Isocyanide-Based Multicomponent Chemistry. ChemInform, 2003, 34, no-no.	0.1	1
277	Glycoconjugates via Phosphorus Ylides. European Journal of Organic Chemistry, 2019, 2019, 3632-3635.	1.2	1
278	Combining Highâ€Throughput Synthesis and Highâ€Throughput Protein Crystallography for Accelerated Hit Identification. Angewandte Chemie, 2021, 133, 18379-18387.	1.6	1
279	MCR X. Important Aspects for Automating Preparative Chemistry. , 1998, , 184-189.		1
280	Guide for Selection of Relevant Cell Lines During the Evaluation of new Anti-Cancer Compounds. Anti-Cancer Agents in Medicinal Chemistry, 2018, 18, 1072-1081.	0.9	1
281	Research Progress on Natural Diterpenoids in Reversing Multidrug Resistance. Frontiers in Pharmacology, 2022, 13, 815603.	1.6	1
282	Crystal structure of truncated human coatomer protein complex subunit ζ1 (Copζ1). Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 1-8.	0.4	0