Eliandra De Sousa TrichÃas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7144779/publications.pdf

Version: 2024-02-01

42 papers 1,147 citations

471509 17 h-index 395702 33 g-index

44 all docs

44 docs citations

44 times ranked 1390 citing authors

#	Article	IF	CITATIONS
1	Hypoglycemic Effect and Antioxidant Potential of Kaempferol-3,7-O- (\hat{l}_{\pm}) -dirhamnoside from Bauhinia for ficata Leaves. Journal of Natural Products, 2004, 67, 829-832.	3.0	216
2	Insulinomimetic effects of kaempferitrin on glycaemia and on 14C-glucose uptake in rat soleus muscle. Chemico-Biological Interactions, 2004, 149, 89-96.	4.0	132
3	Acute effect of Bauhinia forficata on serum glucose levels in normal and alloxan-induced diabetic rats. Journal of Ethnopharmacology, 2002, 83, 33-37.	4.1	97
4	Follow-up studies on glycosylated flavonoids and their complexes with vanadium: Their anti-hyperglycemic potential role in diabetes. Chemico-Biological Interactions, 2006, 163, 177-191.	4.0	63
5	Effect of crude extract and fractions from Vitex megapotamica leaves on hyperglycemia in alloxan-diabetic rats. Journal of Ethnopharmacology, 2007, 109, 151-155.	4.1	59
6	Flavonóides glicosilados das folhas e flores de Bauhinia forficata (Leguminosae). Quimica Nova, 2003, 26, 466-469.	0.3	55
7	Microstructure and properties of LZSA glass-ceramic foams. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 476, 89-97.	5.6	42
8	LZSA glass ceramic foams prepared by replication process. Advances in Applied Ceramics, 2005, 104, 22-29.	1.1	41
9	Hierarchical structures of \hat{I}^2 -TCP/45S5 bioglass hybrid scaffolds prepared by gelcasting. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 10-23.	3.1	37
10	Influence of the addition of \hat{l}^2 -TCP on the morphology, thermal properties and cell viability of poly (lactic acid) fibers obtained by electrospinning. Materials Science and Engineering C, 2015, 52, 135-143.	7.3	33
11	Incorporation of Collagen from Marine Sponges (Spongin) into Hydroxyapatite Samples: Characterization and In Vitro Biological Evaluation. Marine Biotechnology, 2019, 21, 30-37.	2.4	29
12	Production and Characterization of Porous Polymeric Membranes of PLA/PCL Blends with the Addition of Hydroxyapatite. Journal of Composites Science, 2019, 3, 45.	3.0	28
13	Evaluation of colloidal and polymeric routes in sol-gel synthesis of a bioactive glass-ceramic derived from 45S5 bioglass. Ceramics International, 2020, 46, 20264-20271.	4.8	23
14	Incorporation of 45S5 bioglass via sol-gel in \hat{I}^2 -TCP scaffolds: Bioactivity and antimicrobial activity evaluation. Materials Science and Engineering C, 2021, 131, 112453.	7.3	21
15	Porous membranes of the polycaprolactone (PCL) containing calcium silicate fibers for guided bone regeneration. Materials Letters, 2017, 206, 210-213.	2.6	20
16	Green liquor dregs and slaker grits residues characterization of a pulp and paper mill for future application on ceramic products. Journal of Cleaner Production, 2019, 240, 118220.	9.3	19
17	Evaluation of the sintering temperature on the mechanical behavior of \hat{l}^2 -tricalcium phosphate/calcium silicate scaffolds obtained by gelcasting method. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 635-643.	3.1	19
18	Synergistic effect of adding bioglass and carbon nanotubes on poly (lactic acid) porous membranes for guided bone regeneration. Materials Science and Engineering C, 2020, 117, 111327.	7.3	19

#	Article	IF	Citations
19	Processing of Cellular Glass Ceramics. Journal of the American Ceramic Society, 2006, 89, 3373-3378.	3.8	16
20	Preparation and characterization of stainless steel 316L/HA biocomposite. Materials Research, 2013, 16, 304-309.	1.3	16
21	Bioglassâ€based scaffolds coated with silver nanoparticles: Synthesis, processing and antimicrobial activity. Journal of Biomedical Materials Research - Part A, 2020, 108, 2447-2459.	4.0	16
22	Scaffolds of calcium phosphate cement containing chitosan and gelatin. Materials Research, 2013, 16, 1362-1365.	1.3	14
23	Highly porous 45S5 bioglass-derived glass–ceramic scaffolds by gelcasting of foams. Journal of Materials Science, 2018, 53, 10718-10731.	3.7	14
24	Structural, crystallization and cytocompatibility evaluation of the 45S5 bioglass-derived glass-ceramic containing niobium. Journal of Non-Crystalline Solids, 2021, 555, 120629.	3.1	14
25	Scaffolds of PCL combined to bioglass: synthesis, characterization and biological performance. Journal of Materials Science: Materials in Medicine, 2020, 31, 41.	3.6	13
26	Study of in vitro degradation of brushite cements scaffolds. Journal of Materials Science: Materials in Medicine, 2014, 25, 2297-2303.	3.6	12
27	Morphological, thermal and bioactivity evaluation of electrospun PCL/ \hat{I}^2 -TCP fibers for tissue regeneration. Polimeros, 2019, 29, .	0.7	10
28	Preparation, Characterization and Biological Studies of Î'-TCP and Î'-TCP/Al2O3 Scaffolds Obtained by Gel-Casting of Foams. Materials Research, 2017, 20, 973-983.	1.3	9
29	Evaluation of the In Vivo Biological Effects of Marine Collagen and Hydroxyapatite Composite in a Tibial Bone Defect Model in Rats. Marine Biotechnology, 2020, 22, 357-366.	2.4	9
30	Decomposição térmica de espumas de poliuretano para fabricação de vitrocerâmica celular de Li2O-ZrO2-SiO2-Al2O3 (LZSA). Quimica Nova, 2007, 30, 1104-1107.	0.3	8
31	Produção de cerâmicas celulares por emulsão seguida de gelificação. Ceramica, 2011, 57, 38-44.	0.8	6
32	Produção e caracterização de espumas de alumina pelo processo gelcasting sem controle atmosférico. Ceramica, 2009, 55, 151-156.	0.8	6
33	Brushite cement containing gelatin: evaluation of mechanical strength and in vitro degradation. Ceramica, 2019, 65, 261-266.	0.8	5
34	3D printing of bioactive glass S53P4/sodium alginate sintering-free scaffolds. Bioprinting, 2022, 27, e00226.	5 . 8	5
35	Analysis of indicators of osteogenesis, cytotoxicity and genotoxicity of an experimental β-TCP compared to other bone substitutes. Acta Scientiarum - Health Sciences, 2017, 39, 97.	0.2	4
36	45S5 Bioglass-Derived Glass-Ceramic Scaffolds Containing Niobium Obtained by Gelcasting Method. Materials Research, 2021, 24, .	1.3	4

#	Article	IF	CITATIONS
37	Preparação e caracterização de scaffolds de β-fosfato tricálcico pelo método de freeze casting. Ceramica, 2018, 64, 553-558.	0.8	2
38	Efeito da adição de alumina nas propriedades fÃsicas e mecânicas do β-fosfato tricálcico. Ceramica, 2012, 58, 368-373.	0.8	2
39	Obtenção e caracterização de espumas de cimento de fosfato de cálcio: avaliação dos métodos de emulsão e gelcasting. Ceramica, 2012, 58, 500-503.	0.8	2
40	Processamento e caracterização de espumas vitrocerâmicas do sistema Li2O-ZrO2-SiO2-Al2O3 (LZSA) produzidas por gelcasting. Revista Materia, 2014, 19, 117-124.	0.2	1
41	Production of Li ₂ O-ZrO ₂ -SiO ₂ -Al ₂ O ₃ (LZSA) Glass-Ceramic Foams by Aeration and Polymerization of Suspension. Materials Science Forum, 2014, 775-776, 529-533.	0.3	1
42	Study of crystallization, microstructure and mechanical properties of lithium disilicate glass-ceramics as a function of the sintering temperature. Brazilian Dental Science, 2021, 24, .	0.4	0