
J Marcos FernÃ;ndez-Pradas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7144475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Combined Use of Gold Nanoparticles and Infrared Radiation Enables Cytosolic Protein Delivery. Chemistry - A European Journal, 2021, 27, 4670-4675.	1.7	6
2	Laser-induced forward transfer of conductive screen-printing inks. Applied Surface Science, 2020, 507, 145047.	3.1	30
3	Superparamagnetic Nanoparticles with Efficient Near-Infrared Photothermal Effect at the Second Biological Window. Molecules, 2020, 25, 5315.	1.7	7
4	Laser-Induced Forward Transfer: A Method for Printing Functional Inks. Crystals, 2020, 10, 651.	1.0	25
5	Transparent and conductive silver nanowires networks printed by laser-induced forward transfer. Applied Surface Science, 2019, 476, 828-833.	3.1	27
6	Laser-induced forward transfer for printed electronics applications. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	39
7	Spraying dynamics in continuous wave laser printing of conductive inks. Scientific Reports, 2018, 8, 7999.	1.6	13
8	Laser-induced forward transfer of low viscosity inks. Applied Surface Science, 2017, 418, 530-535.	3.1	21
9	Low-Cost Fabrication of Printed Electronics Devices through Continuous Wave Laser-Induced Forward Transfer. ACS Applied Materials & Interfaces, 2017, 9, 29412-29417.	4.0	45
10	Laser-induced forward transfer: Propelling liquids with light. Applied Surface Science, 2017, 418, 559-564.	3.1	31
11	Beam waist position study for surface modification of polymethyl-methacrylate with femtosecond laser pulses. Applied Surface Science, 2016, 374, 353-358.	3.1	7
12	Printing of silver conductive lines through laser-induced forward transfer. Applied Surface Science, 2016, 374, 265-270.	3.1	16
13	A surface acoustic wave bio-electronic nose for detection of volatile odorant molecules. Biosensors and Bioelectronics, 2015, 67, 516-523.	5.3	58
14	Conductive silver ink printing through the laser-induced forward transfer technique. Applied Surface Science, 2015, 336, 304-308.	3.1	38
15	Femtosecond laser surface ablation of polymethyl-methacrylate with position control through <i>z</i> -scan. Journal Physics D: Applied Physics, 2015, 48, 335302.	1.3	8
16	Precise surface modification of polymethyl-methacrylate with near-infrared femtosecond laser. Applied Surface Science, 2015, 336, 170-175.	3.1	9
17	Interaction between jets during laser-induced forward transfer. Applied Physics Letters, 2014, 105, 014101.	1.5	23
18	Laser-generated liquid microjets: correlation between bubble dynamics and liquid ejection. Microfluidics and Nanofluidics, 2014, 16, 55-63.	1.0	62

#	Article	IF	CITATIONS
19	Film-free laser printing: Jetting dynamics analyzed through time-resolved imaging. Applied Surface Science, 2014, 302, 303-308.	3.1	12
20	Surface ablation of transparent polymers with femtosecond laser pulses. Applied Surface Science, 2014, 302, 226-230.	3.1	13
21	Preparation of surface acoustic wave odor sensors by laser-induced forward transfer. Sensors and Actuators B: Chemical, 2014, 192, 369-377.	4.0	37
22	Deposition and characterization of lines printed through laser-induced forward transfer. Applied Physics A: Materials Science and Processing, 2013, 110, 751-755.	1.1	27
23	Applications of laser printing for organic electronics. Proceedings of SPIE, 2013, , .	0.8	17
24	Irradiation of glass with infrared femtosecond laser pulses. Applied Physics A: Materials Science and Processing, 2013, 112, 203-207.	1.1	5
25	Femtosecond laser ablation of polymethyl-methacrylate with high focusing control. Applied Surface Science, 2013, 278, 185-189.	3.1	35
26	Laser microfabrication of biomedical devices: time-resolved microscopy of the printing process. Proceedings of SPIE, 2013, , .	0.8	0
27	Film-free laser microprinting of complex materials. , 2013, , .		0
28	Film-free laser microprinting of transparent solutions. , 2013, , .		1
29	On the correlation between droplet volume and irradiation conditions in the laser forward transfer of liquids. Applied Physics A: Materials Science and Processing, 2012, 109, 5-14.	1.1	12
30	Surface modification of UHMWPE with infrared femtosecond laser. Applied Surface Science, 2012, 258, 9256-9259.	3.1	12
31	Microdroplet deposition through a film-free laser forward printing technique. Applied Surface Science, 2012, 258, 9412-9416.	3.1	10
32	Influence of solution properties in the laser forward transfer of liquids. Applied Surface Science, 2012, 258, 9379-9384.	3.1	32
33	Study of liquid deposition during laser printing of liquids. Applied Surface Science, 2011, 257, 5255-5258.	3.1	21
34	Liquids microprinting through a novel film-free femtosecond laser based technique. Applied Surface Science, 2011, 257, 5190-5194.	3.1	19
35	Droplet printing through bubble contact in the laser forward transfer of liquids. Applied Surface Science, 2011, 257, 2825-2829.	3.1	15
36	3D features of modified photostructurable glass–ceramic with infrared femtosecond laser pulses. Applied Surface Science, 2011, 257, 5219-5222.	3.1	6

#	Article	IF	CITATIONS
37	Microchannel formation through Foturan® with infrared femtosecond and ultraviolet nanosecond lasers. Journal of Micromechanics and Microengineering, 2011, 21, 025005.	1.5	5
38	Sessile droplet formation in the laser-induced forward transfer of liquids: A time-resolved imaging study. Thin Solid Films, 2010, 518, 5321-5325.	0.8	65
39	Novel laser printing technique for miniaturized biosensors preparation. Sensors and Actuators B: Chemical, 2010, 145, 596-600.	4.0	62
40	The laser-induced forward transfer technique for microprinting. , 2010, , 367-393.		6
41	Film-free laser forward printing of transparent and weakly absorbing liquids. Optics Express, 2010, 18, 21815.	1.7	47
42	Laser-Induced Forward Transfer: A Laser-Based Technique for Biomolecules Printing. , 2010, , 53-80.		7
43	Time-resolved imaging of the laser forward transfer of liquids. Journal of Applied Physics, 2009, 106, .	1.1	128
44	Laser fabricated microchannels inside photostructurable glass-ceramic. Applied Surface Science, 2009, 255, 5499-5502.	3.1	35
45	Liquids microprinting through laser-induced forward transfer. Applied Surface Science, 2009, 255, 5342-5345.	3.1	52
46	Printing biological solutions through laser-induced forward transfer. Applied Physics A: Materials Science and Processing, 2008, 93, 941-945.	1.1	57
47	Jet formation in the laser forward transfer of liquids. Applied Physics A: Materials Science and Processing, 2008, 93, 453-456.	1.1	94
48	Production of miniaturized biosensors through laser-induced forward transfer. , 2007, , .		3
49	Laser printing of enamels on tiles. Applied Surface Science, 2007, 253, 7733-7737.	3.1	8
50	Study of the laser-induced forward transfer of liquids for laser bioprinting. Applied Surface Science, 2007, 253, 7855-7859.	3.1	105
51	Laser-induced forward transfer of liquids: Study of the droplet ejection process. Journal of Applied Physics, 2006, 99, 084909.	1.1	122
52	Influence of preheating and hematite content of clay brick pavers on the characteristics of lines marked with a Nd:YAG laser. Applied Surface Science, 2006, 253, 2272-2277.	3.1	8
53	Growth of large microcones in steel under multipulsed Nd:YAG laser irradiation. Applied Physics A: Materials Science and Processing, 2006, 83, 417-420.	1.1	34
54	Marking of lines on clay brick pavers by vitrification with a Nd:YAG laser. Journal of Laser Applications, 2006, 18, 156-160.	0.8	3

#	Article	IF	CITATIONS
55	DNA deposition through laser induced forward transfer. Biosensors and Bioelectronics, 2005, 20, 1638-1642.	5.3	186
56	Analysis of the interface between a pulsed laser deposited calcium phosphate coating and a titanium alloy substrate. Applied Physics A: Materials Science and Processing, 2005, 80, 325-331.	1.1	3
57	Preparation of functional DNA microarrays through laser-induced forward transfer. Applied Physics Letters, 2004, 85, 1639-1641.	1.5	158
58	Laser-induced forward transfer of biomolecules. Thin Solid Films, 2004, 453-454, 27-30.	0.8	102
59	Laser direct writing of biomolecule microarrays. Applied Physics A: Materials Science and Processing, 2004, 79, 949-952.	1.1	57
60	Coloring of titanium through laser oxidation: comparative study with anodizing. Surface and Coatings Technology, 2004, 187, 106-112.	2.2	118
61	In vitro bioactivity of laser ablation pseudowollastonite coating. Biomaterials, 2004, 25, 1983-1990.	5.7	53
62	<title>Production of biomolecule microarrays through laser induced forward transfer</title> . , 2004, , .		8
63	Inhomogeneity of calcium phosphate coatings deposited by laser ablation at high deposition rate. Applied Physics A: Materials Science and Processing, 2003, 76, 251-256.	1.1	7
64	Characterization of calcium phosphate coatings deposited by Nd:YAG laser ablation at 355nm: influence of thickness. Biomaterials, 2002, 23, 1989-1994.	5.7	33
65	Pulsed laser deposition of pseudowollastonite coatings. Biomaterials, 2002, 23, 2057-2061.	5.7	31
66	Influence of the interface layer on the adhesion of pulsed laser deposited hydroxyapatite coatings on titanium alloy. Applied Surface Science, 2002, 195, 31-37.	3.1	55
67	Evolution of the deposition rate during pulsed laser deposition of hydroxyapatite coatings and its relation with target morphology. Applied Physics A: Materials Science and Processing, 2001, 72, 613-618.	1.1	11
68	Influence of thickness on the properties of hydroxyapatite coatings deposited by KrF laser ablation. Biomaterials, 2001, 22, 2171-2175.	5.7	76
69	Bone growth on and resorption of calcium phosphate coatings obtained by pulsed laser deposition. , 2000, 49, 43-52.		80
70	Behavior in simulated body fluid of calcium phosphate coatings obtained by laser ablation. Biomaterials, 2000, 21, 1861-1865.	5.7	87
71	Mechanical properties of calcium phosphate coatings deposited by laser ablation. Biomaterials, 2000, 21, 967-971.	5.7	115
72	Hydroxyapatite coatings grown by pulsed laser deposition with a beam of 355 nm wavelength. Journal of Materials Research, 1999, 14, 4715-4719.	1.2	23

#	Article	IF	CITATIONS
73	Application of dissolution experiments to characterise the structure of pulsed laser-deposited calcium phosphate coatings. Biomaterials, 1999, 20, 1401-1405.	5.7	19
74	Study of the plume generated by Nd:YAG laser ablation of a hydroxyapatite target. Applied Physics A: Materials Science and Processing, 1999, 69, S183-S186.	1.1	11
75	Deposition of hydroxyapatite thin films by excimer laser ablation. Thin Solid Films, 1998, 317, 393-396.	0.8	94
76	Dissolution behaviour of calcium phosphate coatings obtained by laser ablation. Biomaterials, 1998, 19, 1483-1487.	5.7	73
77	Interaction effects of an excimer laser beam with hydroxyapatite targets. Applied Surface Science, 1997, 109-110, 384-388.	3.1	11