
Osvaldo Valeria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7143761/publications.pdf Version: 2024-02-01

OSVALDO VALERIA

#	Article	IF	CITATIONS
1	Effects of topography and thickness of organic layer on productivity of black spruce boreal forests of the Canadian Clay Belt region. Forest Ecology and Management, 2014, 330, 144-157.	3.2	51
2	Managing Understory Vegetation for Maintaining Productivity in Black Spruce Forests: A Synthesis within a Multi-Scale Research Model. Forests, 2013, 4, 613-631.	2.1	31
3	Fire Detection and Fire Radiative Power in Forests and Low-Biomass Lands in Northeast Asia: MODIS versus VIIRS Fire Products. Remote Sensing, 2020, 12, 2870.	4.0	30
4	Monitoring Forest Recovery Following Wildfire and Harvest in Boreal Forests Using Satellite Imagery. Forests, 2015, 6, 4105-4134.	2.1	21
5	Ecosystem management in paludified boreal forests: enhancing wood production, biodiversity, and carbon sequestration at the landscape level. Forest Ecosystems, 2018, 5, .	3.1	19
6	Predictive mapping of bryophyte richness patterns in boreal forests using species distribution models and remote sensing data. Ecological Indicators, 2020, 119, 106826.	6.3	18
7	Mechanical site preparation: Key to microsite creation success on Clay Belt paludified sites. Forestry Chronicle, 2015, 91, 187-196.	0.6	17
8	The use of ground penetrating radar for remote sensing the organic layer – mineral soil interface in paludified boreal forests. Canadian Journal of Remote Sensing, 2013, 39, 74-88.	2.4	16
9	Mitigating post-fire regeneration failure in boreal landscapes with reforestation and variable retention harvesting: At what cost?. Canadian Journal of Forest Research, 2022, 52, 568-581.	1.7	16
10	The role of mineral soil topography on the spatial distribution of organic layer thickness in a paludified boreal landscape. Geoderma, 2014, 221-222, 70-81.	5.1	15
11	Spatiotemporal Variations of Satellite Microwave Emissivity Difference Vegetation Index in China Under Clear and Cloudy Skies. Earth and Space Science, 2020, 7, e2020EA001145.	2.6	14
12	No place to hide: Rare plant detection through remote sensing. Diversity and Distributions, 2021, 27, 948-961.	4.1	14
13	Distinguishing and mapping permanent and reversible paludified landscapes in Canadian black spruce forests. Geoderma, 2015, 237-238, 88-97.	5.1	13
14	Effects of Mechanical Site Preparation on Microsite Availability and Growth of Planted Black Spruce in Canadian Paludified Forests. Forests, 2019, 10, 670.	2.1	13
15	Emulating boreal forest disturbance dynamics: Can we maintain timber supply, aboriginal land use, and woodland caribou habitat?. Forestry Chronicle, 2013, 89, 54-65.	0.6	12
16	Monitoring the state of a large boreal forest region in eastern Canada through the use of multitemporal classified satellite imagery. Canadian Journal of Remote Sensing, 2012, 38, 91-108.	2.4	11
17	Landscape-Scale Influence of Topography on Organic Layer Accumulation in Paludified Boreal Forests. Forest Science, 2014, 60, 579-590.	1.0	11
18	Analysis of the Effect of Climate Warming on Paludification Processes: Will Soil Conditions Limit the Adaptation of Northern Boreal Forests to Climate Change? A Synthesis. Forests, 2020, 11, 1176.	2.1	11

OSVALDO VALERIA

#	Article	IF	CITATIONS
19	Assessing forest fire properties in Northeastern Asia and Southern China with satellite microwave Emissivity Difference Vegetation Index (EDVI). ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 183, 54-65.	11.1	11
20	Digital mapping of paludification in soils under black spruce forests of eastern Canada. Geoderma Regional, 2018, 15, e00194.	2.1	10
21	Projecting future aboveground biomass and productivity of managed eastern Canadian mixedwood boreal forest in response to climate change. Forest Ecology and Management, 2021, 487, 119016.	3.2	9
22	Regional Climate, Edaphic Conditions and Establishment Substrates Interact to Influence Initial Growth of Black Spruce and Jack Pine Planted in the Boreal Forest. Forests, 2020, 11, 139.	2.1	8
23	A landscape-level tool for assessing natural regeneration density of Picea mariana and Pinus banksiana following fire and salvage logging. Forest Ecology and Management, 2016, 373, 189-202.	3.2	7
24	Measuring Spatial and Temporal Gravelled Forest Road Degradation in the Boreal Forest. Remote Sensing, 2022, 14, 457.	4.0	6
25	Predictive mapping of bryophyte diversity associated with mature forests using LiDAR-derived indices in a strongly managed landscape. Ecological Indicators, 2022, 136, 108585.	6.3	6
26	Complementary airborne LiDAR and satellite indices are reliable predictors of disturbance-induced structural diversity in mixed old-growth forest landscapes. Remote Sensing of Environment, 2021, 267, 112746.	11.0	5
27	Small but visible: Predicting rare bryophyte distribution and richness patterns using remote sensing-based ensembles of small models. PLoS ONE, 2022, 17, e0260543.	2.5	5
28	"Old―is not precise enough: Airborne laser scanning reveals age-related structural diversity within old-growth forests. Remote Sensing of Environment, 2022, 278, 113098.	11.0	5
29	Twenty-Eight Years of Changes in Landscape Heterogeneity of Mixedwood Boreal Forest Under Management in Quebec, Canada. Canadian Journal of Remote Sensing, 2018, 44, 26-39.	2.4	4
30	Modeling paludification and fire impacts on the forest productivity of a managed landscape using valuable indicators: the example of the Clay Belt. Canadian Journal of Forest Research, 2021, 51, 1347-1356.	1.7	4
31	Characterisation of Beaver Habitat Parameters That Promote the Use of Culverts as Dam Construction Sites: Can We Limit the Damage to Forest Roads?. Forests, 2017, 8, 494.	2.1	3
32	Soil data for mapping paludification in black spruce forests of eastern Canada. Data in Brief, 2018, 21, 2616-2621.	1.0	3
33	Ranking Importance of Topographical Surface and Subsurface Parameters on Paludification in Northern Boreal Forests Using Very High Resolution Remotely Sensed Datasets. Sustainability, 2020, 12, 577.	3.2	3
34	lrregular forest structures originating after fire: An opportunity to promote alternatives to evenâ€aged management in boreal forests. Journal of Applied Ecology, 0, , .	4.0	3
35	How Initial Forest Cover, Site Characteristics and Fire Severity Drive the Dynamics of the Southern Boreal Forest. Remote Sensing, 2020, 12, 3957.	4.0	2
36	Black spruce seedling growth response in controlled organic and organic-mineral substrates. Silva Fennica, 2019, 53, .	1.3	2

#	Article	IF	CITATIONS
37	Effects of Spatial Boreal Forest Harvesting Practices on Efficiency through a Benchmarking Approach in Eastern Canada. Forests, 2021, 12, 1108.	2.1	1