Seok Ju Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7143718/publications.pdf Version: 2024-02-01

SEOR LU KANG

#	Article	IF	CITATIONS
1	Carbothermal shock-induced bifunctional Pt-Co alloy electrocatalysts for high-performance seawater batteries. Energy Storage Materials, 2022, 45, 281-290.	9.5	11
2	Malonic-acid-functionalized fullerene enables the interfacial stabilization of Ni-rich cathodes in lithium-ion batteries. Journal of Power Sources, 2022, 521, 230923.	4.0	21
3	Strong interfacial energetics between catalysts and current collectors in aqueous sodium–air batteries. Journal of Materials Chemistry A, 2022, 10, 4601-4610.	5.2	10
4	Synthesis of α,β-unsaturated ketones through nickel-catalysed aldehyde-free hydroacylation of alkynes. Communications Chemistry, 2022, 5, .	2.0	8
5	Coupling structural evolution and oxygen-redox electrochemistry in layered transition metal oxides. Nature Materials, 2022, 21, 664-672.	13.3	89
6	Critical Void Dimension of Carbon Frameworks to Accommodate Insoluble Products of Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2022, 14, 492-501.	4.0	1
7	Rapid access to polycyclic N-heteroarenes from unactivated, simple azines via a base-promoted Minisci-type annulation. Nature Communications, 2022, 13, 2421.	5.8	6
8	Enhancing the conductivity of PEDOT:PSS films for biomedical applications via hydrothermal treatment. Biosensors and Bioelectronics, 2021, 171, 112717.	5.3	37
9	Ordered Mesoporous Carbons with Graphitic Tubular Frameworks by Dual Templating for Efficient Electrocatalysis and Energy Storage. Angewandte Chemie, 2021, 133, 1461-1469.	1.6	5
10	Ordered Mesoporous Carbons with Graphitic Tubular Frameworks by Dual Templating for Efficient Electrocatalysis and Energy Storage. Angewandte Chemie - International Edition, 2021, 60, 1441-1449.	7.2	40
11	Metal-Ion Chelating Gel Polymer Electrolyte for Ni-Rich Layered Cathode Materials at a High Voltage and an Elevated Temperature. ACS Applied Materials & Interfaces, 2021, 13, 9965-9974.	4.0	9
12	Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nature Energy, 2021, 6, 362-371.	19.8	274
13	A dismutase-biomimetic bifunctional mobile catalyst for anti-aging lithium–oxygen batteries. Journal of Power Sources, 2021, 492, 229633.	4.0	10
14	Solid solution of semiconducting contorted small molecules for high-performance Li/Na-ion host electrodes. Energy Storage Materials, 2021, 36, 123-131.	9.5	3
15	"Water-in-salt―and NASICON Electrolyte-Based Na–CO2 Battery. Energy Storage Materials, 2021, 37, 424-432.	9.5	19
16	Waterâ€Repellent Ionic Liquid Skinny Gels Customized for Aqueous Znâ€Ion Battery Anodes. Advanced Functional Materials, 2021, 31, 2103850.	7.8	63
17	Waterâ€Repellent Ionic Liquid Skinny Gels Customized for Aqueous Znâ€lon Battery Anodes (Adv. Funct.) Tj ETO	2q110.78 7.8	34314 rgBT
18	Engineering crystal phase of Nylon-11 films for ferroelectric device and piezoelectric sensor. Nano Energy, 2021, 88, 106244.	8.2	11

#	Article	IF	CITATIONS
19	Nitrate Molten Salt Electrolytes with Iron Oxide Catalysts for Open and Sealed Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2021, 13, 47740-47748.	4.0	9
20	Crystalline chlorinated contorted hexabenzocoronene: a universal organic anode for advanced alkali-ion batteries. Journal of Materials Chemistry A, 2021, 9, 20607-20614.	5.2	5
21	Alkali-Metal-Mediated Reversible Chemical Hydrogen Storage Using Seawater. Jacs Au, 2021, 1, 2339-2348.	3.6	6
22	Highly Stable Upconverting Nanocrystal–Polydiacetylenes Nanoplates for Orthogonal Dual Signaling-Based Detection of Cyanide. ACS Applied Materials & Interfaces, 2020, 12, 4934-4943.	4.0	33
23	Unveiling Nickel Chemistry in Stabilizing Highâ€Voltage Cobaltâ€Rich Cathodes for Lithiumâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1907903.	7.8	107
24	Dual Functionalization of Hexagonal Boron Nitride Nanosheets Using Pyrene-Tethered Poly(4-vinylpyridine) for Stable Dispersion and Facile Device Incorporation. ACS Applied Nano Materials, 2020, 3, 7633-7642.	2.4	12
25	Tailored Poly(vinylidene fluoride- <i>co</i> -trifluoroethylene) Crystal Orientation for a Triboelectric Nanogenerator through Epitaxial Growth on a Chitin Nanofiber Film. Nano Letters, 2020, 20, 6651-6659.	4.5	38
26	Unveiling 79‥earâ€Old Ixene and Its BNâ€Doped Derivative. Angewandte Chemie, 2020, 132, 15001-15005.	1.6	7
27	Unveiling 79â€Yearâ€Old Ixene and Its BNâ€Doped Derivative. Angewandte Chemie - International Edition, 2020, 59, 14891-14895.	7.2	29
28	Tetraruthenium Polyoxometalate as an Atom-Efficient Bifunctional Oxygen Evolution Reaction/Oxygen Reduction Reaction Catalyst and Its Application in Seawater Batteries. ACS Applied Materials & Interfaces, 2020, 12, 32689-32697.	4.0	23
29	Redoxâ€Active Functional Electrolyte for Highâ€Performance Seawater Batteries. ChemSusChem, 2020, 13, 2220-2224.	3.6	17
30	Synergistic effect of quinary molten salts and ruthenium catalyst for high-power-density lithium-carbon dioxide cell. Nature Communications, 2020, 11, 456.	5.8	39
31	Atomically dispersed Pt–N4 sites as efficient and selective electrocatalysts for the chlorine evolution reaction. Nature Communications, 2020, 11, 412.	5.8	154
32	Pyridinic-Nitrogen-Containing Carbon Cathode: Efficient Electrocatalyst for Seawater Batteries. ACS Applied Energy Materials, 2020, 3, 1602-1608.	2.5	21
33	Co-solvent induced piezoelectric γ-phase nylon-11 separator for sodium metal battery. Nano Energy, 2020, 70, 104501.	8.2	23
34	An Antiaging Electrolyte Additive for Highâ€Energyâ€Density Lithiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2000563.	10.2	50
35	Sodium Biphenyl as Anolyte for Sodium–Seawater Batteries. Advanced Functional Materials, 2020, 30, 2001249.	7.8	24
36	Multiâ€Color Luminescence Transition of Upconversion Nanocrystals via Crystal Phase Control with SiO ₂ for High Temperature Thermal Labels. Advanced Science, 2020, 7, 2000104.	5.6	14

#	Article	IF	CITATIONS
37	Identifying the mechanism and impact of parasitic reactions occurring in carbonaceous seawater battery cathodes. Journal of Materials Chemistry A, 2020, 8, 9185-9193.	5.2	20
38	Wire-Shaped 3D-Hybrid Supercapacitors as Substitutes for Batteries. Nano-Micro Letters, 2020, 12, 28.	14.4	26
39	Biomimetic Superoxide Disproportionation Catalyst for Anti-Aging Lithium–Oxygen Batteries. ACS Nano, 2019, 13, 9190-9197.	7.3	29
40	Investigation of Li–O ₂ Battery Performance Integrated with RuO ₂ Inverse Opal Cathodes in DMSO. ACS Applied Energy Materials, 2019, 2, 5109-5115.	2.5	10
41	Organic Semiconductor Cocrystal for Highly Conductive Lithium Host Electrode. Advanced Functional Materials, 2019, 29, 1902888.	7.8	19
42	Deterministic growth of a sodium metal anode on a pre-patterned current collector for highly rechargeable seawater batteries. Journal of Materials Chemistry A, 2019, 7, 9773-9781.	5.2	41
43	Critical work of adhesion for economical patterning of silver nanowire-based transparent electrodes. Journal of Materials Chemistry A, 2019, 7, 14536-14544.	5.2	24
44	Epitaxially Grown Ferroelectric PVDFâ€TrFE Film on Shapeâ€Tailored Semiconducting Rubrene Single Crystal. Small, 2018, 14, e1704024.	5.2	19
45	Unsymmetrical fluorinated malonatoborate as an amphoteric additive for high-energy-density lithium-ion batteries. Energy and Environmental Science, 2018, 11, 1552-1562.	15.6	154
46	Fluoroethylene Carbonate-Based Electrolyte with 1 M Sodium Bis(fluorosulfonyl)imide Enables High-Performance Sodium Metal Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 15270-15280.	4.0	133
47	Biodegradable, electro-active chitin nanofiber films for flexible piezoelectric transducers. Nano Energy, 2018, 48, 275-283.	8.2	101
48	Reliable seawater battery anode: controlled sodium nucleation <i>via</i> deactivation of the current collector surface. Journal of Materials Chemistry A, 2018, 6, 19672-19680.	5.2	30
49	Capacitive Organic Anode Based on Fluorinated ontorted Hexabenzocoronene: Applicable to Lithiumâ€ion and Sodiumâ€ion Storage Cells. Advanced Science, 2018, 5, 1801365.	5.6	35
50	Contact Angle Analysis: Contact Angle Analysis for the Prediction of Defect States of Graphene Grafted with Functional Groups (Adv. Mater. Interfaces 19/2018). Advanced Materials Interfaces, 2018, 5, 1870093.	1.9	1
51	Chemically impregnated NiO catalyst for molten electrolyte based gas-tank-free Li O2 battery. Journal of Power Sources, 2018, 402, 68-74.	4.0	11
52	Contorted polycyclic aromatic hydrocarbon: promising Li insertion organic anode. Journal of Materials Chemistry A, 2018, 6, 12589-12597.	5.2	21
53	Contact Angle Analysis for the Prediction of Defect States of Graphene Grafted with Functional Groups. Advanced Materials Interfaces, 2018, 5, 1800166.	1.9	6
54	Hierarchical Chitin Fibers with Aligned Nanofibrillar Architectures: A Nonwoven-Mat Separator for Lithium Metal Batteries. ACS Nano, 2017, 11, 6114-6121.	7.3	133

Seok Ju Kang

#	Article	IF	CITATIONS
55	Facile control of nanoporosity in Cellulose Acetate using Nickel(II) nitrate additive and water pressure treatment for highly efficient battery gel separators. Scientific Reports, 2017, 7, 1287.	1.6	25
56	Epitaxially Selfâ€Assembled Alkane Layers for Graphene Electronics. Advanced Materials, 2017, 29, 1603925.	11.1	24
57	Cold Isostaticâ€Pressured Silver Nanowire Electrodes for Flexible Organic Solar Cells via Roomâ€īemperature Processes. Advanced Materials, 2017, 29, 1701479.	11.1	111
58	Critical Role of Cations in Lithium Sites on Extended Electrochemical Reversibility of Coâ€Rich Layered Oxide. Advanced Materials, 2017, 29, 1605578.	11.1	57
59	Significance of ferroelectric polarization in poly (vinylidene difluoride) binder for high-rate Li-ion diffusion. Nano Energy, 2017, 32, 255-262.	8.2	61
60	Superoxide stability for reversible Na-O2 electrochemistry. Scientific Reports, 2017, 7, 17635.	1.6	34
61	First-Principles Study of the Role of O ₂ and H ₂ O in the Decoupling of Graphene on Cu(111). Journal of the American Chemical Society, 2016, 138, 10986-10994.	6.6	29
62	Vertically grown nanowire crystals of dibenzotetrathienocoronene (DBTTC) on large-area graphene. RSC Advances, 2016, 6, 59582-59589.	1.7	6
63	Epitaxial Growth of Thin Ferroelectric Polymer Films on Graphene Layer for Fully Transparent and Flexible Nonvolatile Memory. Nano Letters, 2016, 16, 334-340.	4.5	117
64	Epitaxial Growth of Molecular Crystals on van der Waals Substrates for Highâ€Performance Organic Electronics. Advanced Materials, 2014, 26, 2812-2817.	11.1	120
65	Deactivation of carbon electrode for elimination of carbon dioxide evolution from rechargeable lithium–oxygen cells. Nature Communications, 2014, 5, 3937.	5.8	76
66	Improved cycle efficiency of lithium metal electrodes in Li–O2 batteries by a two-dimensionally ordered nanoporous separator. Journal of Materials Chemistry A, 2014, 2, 9970.	5.2	45
67	Laser-Induced Nondestructive Patterning of a Thin Ferroelectric Polymer Film with Controlled Crystals using Ge ₈ Sb ₂ Te ₁₁ Alloy Layer for Nonvolatile Memory. ACS Applied Materials & Interfaces, 2014, 6, 15171-15178.	4.0	13
68	Organic Field Effect Transistors Based on Graphene and Hexagonal Boron Nitride Heterostructures. Advanced Functional Materials, 2014, 24, 5157-5163.	7.8	64
69	Wafer-Scale Arrays of Nonvolatile Polymer Memories with Microprinted Semiconducting Small Molecule/Polymer Blends. ACS Applied Materials & Interfaces, 2013, 5, 10696-10704.	4.0	33
70	Using Self-Organization To Control Morphology in Molecular Photovoltaics. Journal of the American Chemical Society, 2013, 135, 2207-2212.	6.6	126
71	Supersized contorted aromatics. Chemical Science, 2013, 4, 2018.	3.7	141
72	Controlled Doping in Thinâ€Film Transistors of Large Contorted Aromatic Compounds. Angewandte Chemie - International Edition, 2013, 52, 4558-4562.	7.2	38

#	Article	IF	CITATIONS
73	Ligand chemistry of titania precursor affects transient photovoltaic behavior in inverted organic solar cells. Applied Physics Letters, 2013, 102, 103302.	1.5	12
74	Control of Current Hysteresis of Networked Singleâ€Walled Carbon Nanotube Transistors by a Ferroelectric Polymer Gate Insulator. Advanced Functional Materials, 2013, 23, 1120-1128.	7.8	23
75	6,12-Diarylindeno[1,2- <i>b</i>]fluorenes: Syntheses, Photophysics, and Ambipolar OFETs. Journal of the American Chemical Society, 2012, 134, 10349-10352.	6.6	295
76	A Supramolecular Complex in Smallâ€Molecule Solar Cells based on Contorted Aromatic Molecules. Angewandte Chemie - International Edition, 2012, 51, 8594-8597.	7.2	82
77	Thin ferroelectric poly(vinylidene fluoride-chlorotrifluoro ethylene) films for thermal history independent non-volatile polymer memory. Organic Electronics, 2012, 13, 491-497.	1.4	14
78	Fabrication of micropatterned ferroelectric gamma poly(vinylidene fluoride) film for non-volatile polymer memory. Journal of Materials Chemistry, 2011, 21, 3619.	6.7	41
79	Chemically Cross-Linked Thin Poly(vinylidene fluoride-co-trifluoroethylene)Films for Nonvolatile Ferroelectric Polymer Memory. ACS Applied Materials & Interfaces, 2011, 3, 582-589.	4.0	43
80	Nonvolatile Polymer Memory with Nanoconfinement of Ferroelectric Crystals. Nano Letters, 2011, 11, 138-144.	4.5	122
81	Compression of Cross-Linked Poly(vinylidene fluoride- <i>co</i> -trifluoro ethylene) Films for Facile Ferroelectric Polarization. ACS Applied Materials & amp; Interfaces, 2011, 3, 4736-4743.	4.0	14
82	AC Field-Induced Polymer Electroluminescence with Single Wall Carbon Nanotubes. Nano Letters, 2011, 11, 966-972.	4.5	68
83	Non-volatile memory characteristics of epitaxially grown PVDF-TrFE thin films and their printed micropattern application. Current Applied Physics, 2011, 11, e30-e34.	1.1	27
84	Tailored Single Crystals of Triisopropylsilylethynyl Pentacene by Selective Contact Evaporation Printing. Advanced Materials, 2011, 23, 3398-3402.	11.1	67
85	Inking Elastomeric Stamps with Microâ€Patterned, Single Layer Graphene to Create Highâ€Performance OFETs. Advanced Materials, 2011, 23, 3531-3535.	11.1	100
86	One-step micropatterning of highly-ordered semi-crystalline poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 Electronics, 2011, 12, 98-107.	0 227 Td (1.4	fluoride-co-tr 8
87	Self assembled block copolymer gate insulators with cylindrical nanostructures for pentacene thin film transistor. Macromolecular Research, 2010, 18, 777-786.	1.0	10
88	Ultrathin Electronic Composite Sheets of Metallic/Semiconducting Carbon Nanotubes Embedded in Conjugated Block Copolymers. Advanced Functional Materials, 2010, 20, 4305-4313.	7.8	17
89	Ultrathin Electronic Composite Sheets of Metallic/Semiconducting Carbon Nanotubes Embedded in Conjugated Block Copolymers. Advanced Functional Materials, 2010, 20, 4304-4304.	7.8	0
90	Organic ferroelectric field-effect transistor with P(VDF-TrFE)/PMMA blend thin films for non-volatile memory applications. Current Applied Physics, 2010, 10, e54-e57.	1.1	22

#	Article	IF	CITATIONS
91	Control of thin ferroelectric polymer films for non-volatile memory applications. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17, 1135-1163.	1.8	113
92	Polarization retention of thin ferroelectricya capacitors. Applied Physics Letters, 2009, 95, .	1.5	12
93	Nonâ€volatile Ferroelectric Poly(vinylidene fluorideâ€ <i>co</i> â€trifluoroethylene) Memory Based on a Singleâ€Crystalline Triâ€isopropylsilylethynyl Pentacene Fieldâ€Effect Transistor. Advanced Functional Materials, 2009, 19, 1609-1616.	7.8	139
94	Printable Ferroelectric PVDF/PMMA Blend Films with Ultralow Roughness for Low Voltage Nonâ€Volatile Polymer Memory. Advanced Functional Materials, 2009, 19, 2812-2818.	7.8	239
95	Polymeric gate dielectric interlayer of cross-linkable poly(styrene-r-methylmethacrylate) copolymer for ferroelectric PVDF-TrFE field effect transistor memory. Organic Electronics, 2009, 10, 849-856.	1.4	40

Shear-Induced Ordering of Ferroelectric Crystals in Spin-Coated Thin Poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 542 Td (fluor

97	Ordered Ferroelectric PVDFâ^'TrFE Thin Films by High Throughput Epitaxy for Nonvolatile Polymer Memory. Macromolecules, 2008, 41, 8648-8654.	2.2	105
98	Molecular and Crystalline Microstructure of Ferroelectric Poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 46 Au Substrates. Macromolecules, 2008, 41, 109-119.	57 Td (fluc 2.2	oride- <i>co 50</i>
99	Polymeric tandem organic light-emitting diodes using a self-organized interfacial layer. Applied Physics Letters, 2008, 92, .	1.5	13
100	Spin cast ferroelectric beta poly(vinylidene fluoride) thin films via rapid thermal annealing. Applied Physics Letters, 2008, 92, .	1.5	141
101	High throughput epitaxy of ferroelectric PVDF-TrFE thin films on molecularly ordered PTFE surface for non-volatile polymer memory. , 2008, , .		0
102	Recovery of remanent polarization of poly(vinylidene fluoride-co-trifluoroethylene) thin film after high temperature annealing using topographically nanostructured aluminium bottom electrode. Applied Physics Letters, 2007, 90, 222903.	1.5	23
103	Localized Pressure-Induced Ferroelectric Pattern Arrays of Semicrystalline Poly(vinylidene fluoride) by Microimprinting. Advanced Materials, 2007, 19, 581-586. 	11.1	100
104	Irreversible extinction of ferroelectric polarization in P(VDF-TrFE) thin films upon melting and recrystallization. Applied Physics Letters, 2006, 88, 242908.	1.5	107