
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7143654/publications.pdf Version: 2024-02-01

KIIN RIII

#	Article	IF	CITATIONS
1	Highly sensitive omnidirectional signal manipulation from a flexible anisotropic strain sensor based on aligned carbon hybrid nanofibers. Journal of Materials Chemistry A, 2022, 10, 928-938.	10.3	22
2	Compressive Space Dynamics Manipulation Enabling Wearable Fiber Sensors for Highly Sensitive Human Micromotion Monitoring. Advanced Materials Technologies, 2022, 7, .	5.8	1
3	Molecular Bridging Enables Isolated Iron Atoms on Stereoassembled Carbon Framework To Boost Oxygen Reduction for Zincâ€Air Batteries. Chemistry - A European Journal, 2022, 28, .	3.3	4
4	Developing Preparation Craft Platform for Solid Electrolytes Containing Volatile Components: Experimental Study of Competition between Lithium Loss and Densification in Li ₇ La ₃ Zr ₂ O ₁₂ . ACS Applied Materials & Interfaces, 2022, 14, 33340-33354.	8.0	20
5	Achieving Electronic Engineering of Vanadium Oxide-Based 3D Lithiophilic Sandwiched-Aerogel Framework for Ultrastable Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 33306-33314.	8.0	3
6	Recent advances in vanadium-based cathode materials for rechargeable zinc ion batteries. Materials Chemistry Frontiers, 2021, 5, 744-762.	5.9	49
7	Controllable assembling of highly-doped linked carbon bubbles on graphene microfolds. Journal of Energy Chemistry, 2021, 58, 500-507.	12.9	3
8	Vertical nanoarrays with lithiophilic sites suppress the growth of lithium dendrites for ultrastable lithium metal batteries. Chemical Engineering Journal, 2021, 405, 126808.	12.7	24
9	Ultrafast Microwave Polarizing Electrons to Form Vertically Aligned Metal Hybrids as Lithiophilic Buffer for Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 16594-16601.	8.0	9
10	Ultrasensitive and Wearable Carbon Hybrid Fiber Devices as Robust Intelligent Sensors. ACS Applied Materials & Interfaces, 2021, 13, 23905-23914.	8.0	29
11	Metal–organic framework-derived carbon decorated Ni–Sn nanostructures for ultrastable metal-ion batteries. Composites Communications, 2021, 25, 100724.	6.3	2
12	Carbonitridation Pyrolysis Synthesis of Prussian Blue Analogâ€Đerived Carbon Hybrids for Lithiumâ€lon Batteries. Advanced Sustainable Systems, 2021, 5, 2100223.	5.3	9
13	Metallic vanadium trioxide intercalated with phase transformation for advanced aqueous zinc-ion batteries. Journal of Energy Chemistry, 2021, 61, 594-601.	12.9	30
14	Recent advances in Cu-based catalysts for electroreduction of carbon dioxide. Materials Chemistry Frontiers, 2021, 5, 2668-2683.	5.9	21
15	Understanding the structural and chemical evolution of layered potassium titanates for sodium ion batteries. Energy Storage Materials, 2020, 25, 502-509.	18.0	17
16	Poly(ionic liquid) derived N-doped carbon@SnOx nanostructures self-reconstruction for alkaline-metal-ion batteries. Journal of Power Sources, 2020, 449, 227509.	7.8	9
17	Ultrafast Microwave Activating Polarized Electron for Scalable Porous Al toward High-Energy-Density Batteries. Nano Letters, 2020, 20, 8818-8824.	9.1	30
18	Structure Design of Ni–Co Hydroxide Nanoarrays with Facet Engineering on Carbon Chainlike Nanofibers for High-Efficiency Oxygen Evolution. ACS Applied Energy Materials, 2020, 3, 6240-6248.	5.1	20

#	Article	IF	CITATIONS
19	Boosting electrochemical water oxidation: the merits of heterostructured electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 6393-6405.	10.3	63
20	Rational design of hierarchical carbon hybrid microassemblies via reductive-catalytic chemical vapor deposition. Carbon, 2020, 167, 422-430.	10.3	6
21	General Approach to Single and Hybrid Metal Oxide Fiber Structures for Highâ€Performance Lithiumâ€lon Batteries. Chemistry - an Asian Journal, 2020, 15, 1105-1109.	3.3	0
22	Selective Solidâ€Liquid Interface Sulfidation Growth of Hierarchical Copper Sulfide and Its Hybrid Nanoflakes for Superior Lithiumâ€Ion Storage. Chemistry - an Asian Journal, 2020, 15, 1722-1727.	3.3	2
23	Stereoassembled V ₂ O ₅ @FeOOH Hollow Architectures with Lithiation Volumetric Strain Self-Reconstruction for Lithium-Ion Storage. Research, 2020, 2020, 2360796.	5.7	16
24	Recent Progress on Nickelâ€Based Oxide/(Oxy)Hydroxide Electrocatalysts for the Oxygen Evolution Reaction. Chemistry - A European Journal, 2019, 25, 703-713.	3.3	170
25	Electrocatalytically inactive SnS2 promotes water adsorption/dissociation on molybdenum dichalcogenides for accelerated alkaline hydrogen evolution. Nano Energy, 2019, 64, 103918.	16.0	58
26	Low oordinate Iridium Oxide Confined on Graphitic Carbon Nitride for Highly Efficient Oxygen Evolution. Angewandte Chemie, 2019, 131, 12670-12674.	2.0	15
27	Low oordinate Iridium Oxide Confined on Graphitic Carbon Nitride for Highly Efficient Oxygen Evolution. Angewandte Chemie - International Edition, 2019, 58, 12540-12544.	13.8	208
28	Surface Anionization of Self-Assembled Iron Sulfide Hierarchitectures to Enhance Capacitive Storage for Alkaline-Metal-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 39991-39997.	8.0	25
29	Topochemical pyrolytic synthesis of quasi-Mxene hybrids via ionic liquid-iron phthalocyanine as a self-template. Chemical Communications, 2019, 55, 771-774.	4.1	4
30	Direct Hybridization of Noble Metal Nanostructures on 2D Metal–Organic Framework Nanosheets To Catalyze Hydrogen Evolution. Nano Letters, 2019, 19, 8447-8453.	9.1	160
31	Engineering additional edge sites on molybdenum dichalcogenides toward accelerated alkaline hydrogen evolution kinetics. Nanoscale, 2019, 11, 717-724.	5.6	37
32	Manipulating Li2O atmosphere for sintering dense Li7La3Zr2O12 solid electrolyte. Energy Storage Materials, 2019, 22, 207-217.	18.0	114
33	Semiconductorâ€toâ€Metal Transitions: Nitrogen Boosts Defective Vanadium Oxide from Semiconducting to Metallic Merit (Small 22/2019). Small, 2019, 15, 1970116.	10.0	1
34	Electronic Structure Engineering of LiCoO ₂ toward Enhanced Oxygen Electrocatalysis. Advanced Energy Materials, 2019, 9, 1803482.	19.5	85
35	Hydrogel self-templated synthesis of Na3V2(PO4)3@C@CNT porous network as ultrastable cathode for sodium-ion batteries. Composites Communications, 2019, 13, 97-102.	6.3	38
36	Nitrogen Boosts Defective Vanadium Oxide from Semiconducting to Metallic Merit. Small, 2019, 15, e1900583.	10.0	15

#	Article	IF	CITATIONS
37	Using and recycling V2O5 as high performance anode materials for sustainable lithium ion battery. Journal of Power Sources, 2019, 424, 158-164.	7.8	42
38	Rational Design of a Flexible CNTs@PDMS Film Patterned by Bioâ€Inspired Templates as a Strain Sensor and Supercapacitor. Small, 2019, 15, e1805493.	10.0	91
39	Platinum/Nickel Bicarbonate Heterostructures towards Accelerated Hydrogen Evolution under Alkaline Conditions. Angewandte Chemie, 2019, 131, 5486-5491.	2.0	30
40	Stereoselectively Assembled Metal–Organic Framework (MOF) Host for Catalytic Synthesis of Carbon Hybrids for Alkalineâ€Metalâ€Ion Batteries. Angewandte Chemie, 2019, 131, 5361-5365.	2.0	27
41	Stereoselectively Assembled Metal–Organic Framework (MOF) Host for Catalytic Synthesis of Carbon Hybrids for Alkalineâ€Metalâ€Ion Batteries. Angewandte Chemie - International Edition, 2019, 58, 5307-5311.	13.8	79
42	Platinum/Nickel Bicarbonate Heterostructures towards Accelerated Hydrogen Evolution under Alkaline Conditions. Angewandte Chemie - International Edition, 2019, 58, 5432-5437.	13.8	194
43	Coaxial-cable hierarchical tubular MnO ₂ @Fe ₃ O ₄ @C heterostructures as advanced anodes for lithium-ion batteries. Nanotechnology, 2019, 30, 094002.	2.6	5
44	Ironâ€Doped Nickel Molybdate with Enhanced Oxygen Evolution Kinetics. Chemistry - A European Journal, 2019, 25, 280-284.	3.3	38
45	Borohydride‣caffolded Li/Na/Mg Fast Ionic Conductors for Promising Solid‣tate Electrolytes. Advanced Materials, 2019, 31, e1803533.	21.0	105
46	Heteroatomâ€doped MoSe ₂ Nanosheets with Enhanced Hydrogen Evolution Kinetics for Alkaline Water Splitting. Chemistry - an Asian Journal, 2019, 14, 301-306.	3.3	41
47	Flexible phosphorus doped carbon nanosheets/nanofibers: Electrospun preparation and enhanced Li-storage properties as free-standing anodes for lithium ion batteries. Journal of Power Sources, 2018, 384, 27-33.	7.8	42
48	Dual-Function Metal–Organic Framework-Based Wearable Fibers for Gas Probing and Energy Storage. ACS Applied Materials & Interfaces, 2018, 10, 2837-2842.	8.0	68
49	New insights into understanding the exceptional electrochemical performance of P2-type manganese-based layered oxide cathode for sodium ion batteries. Energy Storage Materials, 2018, 15, 257-265.	18.0	86
50	Hybrid 2D Dualâ€Metal–Organic Frameworks for Enhanced Water Oxidation Catalysis. Advanced Functional Materials, 2018, 28, 1801554.	14.9	550
51	Pre-modified Li3PS4 based interphase for lithium anode towards high-performance Li-S battery. Energy Storage Materials, 2018, 11, 16-23.	18.0	119
52	Carbon Necklace Incorporated Electroactive Reservoir Constructing Flexible Papers for Advanced Lithium–Ion Batteries. Small, 2018, 14, 1702770.	10.0	70
53	Topochemical Synthesis of 2D Carbon Hybrids through Selfâ€Boosting Catalytic Carbonization of a Metal–Polymer Framework. Angewandte Chemie - International Edition, 2018, 57, 16436-16441.	13.8	50
54	Topochemical Synthesis of 2D Carbon Hybrids through Selfâ€Boosting Catalytic Carbonization of a Metal–Polymer Framework. Angewandte Chemie, 2018, 130, 16674-16679.	2.0	9

#	Article	IF	CITATIONS
55	Epitaxial growth of Ni(OH) ₂ nanoclusters on MoS ₂ nanosheets for enhanced alkaline hydrogen evolution reaction. Nanoscale, 2018, 10, 19074-19081.	5.6	74
56	An <i>in situ</i> element permeation constructed high endurance Li–LLZO interface at high current densities. Journal of Materials Chemistry A, 2018, 6, 18853-18858.	10.3	157
57	CoSe ₂ /MoSe ₂ Heterostructures with Enriched Water Adsorption/Dissociation Sites towards Enhanced Alkaline Hydrogen Evolution Reaction. Chemistry - A European Journal, 2018, 24, 11158-11165.	3.3	82
58	Highly stable garnet solid electrolyte based Li-S battery with modified anodic and cathodic interfaces. Energy Storage Materials, 2018, 15, 282-290.	18.0	121
59	Cost-Effective Vertical Carbon Nanosheets/Iron-Based Composites as Efficient Electrocatalysts for Water Splitting Reaction. Chemistry of Materials, 2018, 30, 4762-4769.	6.7	48
60	Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review. Advanced Functional Materials, 2018, 28, 1803291.	14.9	906
61	Fe ₇ S ₈ Nanoparticles Anchored on Nitrogen-Doped Graphene Nanosheets as Anode Materials for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 29476-29485.	8.0	75
62	Scalable synthesis of hierarchical porous Ge/rGO microspheres with an ultra-long cycling life for lithium storage. Journal of Power Sources, 2018, 396, 124-133.	7.8	45
63	Ultrathin and large-sized vanadium oxide nanosheets mildly prepared at room temperature for high performance fiber-based supercapacitors. Journal of Materials Chemistry A, 2017, 5, 2483-2487.	10.3	66
64	Sulfonic Groups Originated Dual-Functional Interlayer for High Performance Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2017, 9, 14878-14888.	8.0	126
65	2D Black Phosphorus for Energy Storage and Thermoelectric Applications. Small, 2017, 13, 1700661.	10.0	139
66	Selfâ€Templated Formation of Uniform F uO Hollow Octahedra for Lithium Ion Batteries. Small, 2017, 13, 1603500.	10.0	31
67	A novel strategy to prepare Ge@C/rGO hybrids as high-rate anode materials for lithium ion batteries. Journal of Power Sources, 2017, 342, 521-528.	7.8	50
68	Interconnected CoFe ₂ O ₄ –Polypyrrole Nanotubes as Anode Materials for High Performance Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 36927-36935.	8.0	56
69	Interlayer-Expanded Metal Sulfides on Graphene Triggered by a Molecularly Self-Promoting Process for Enhanced Lithium Ion Storage. ACS Applied Materials & Interfaces, 2017, 9, 40317-40323.	8.0	28
70	FeS2 microsphere as cathode material for rechargeable lithium batteries. Solid State Ionics, 2016, 290, 47-52.	2.7	21
71	Influence of La2Zr2O7 Additive on Densification and Li+ Conductivity for Ta-Doped Li7La3Zr2O12 Garnet. Jom, 2016, 68, 2593-2600.	1.9	46
72	On the dispersion of lithium-sulfur battery cathode materials effected by electrostatic and stereo-chemical factors of binders. Journal of Power Sources, 2016, 324, 455-461.	7.8	56

#	Article	IF	CITATIONS
73	Anchoring Nanostructured Manganese Fluoride on Few-Layer Graphene Nanosheets as Anode for Enhanced Lithium Storage. ACS Applied Materials & Interfaces, 2016, 8, 1819-1826.	8.0	31
74	Reduced free-standing Co ₃ O ₄ @Ni cathode for lithium–oxygen batteries with enhanced electrochemical performance. RSC Advances, 2016, 6, 16263-16267.	3.6	16
75	Controlled construction of 3D hierarchical manganese fluoride nanostructures via an oleylamine-assisted solvothermal route with high performance for rechargeable lithium ion batteries. RSC Advances, 2016, 6, 27170-27176.	3.6	10
76	High-performance lithium storage in an ultrafine manganese fluoride nanorod anode with enhanced electrochemical activation based on conversion reaction. Physical Chemistry Chemical Physics, 2016, 18, 3780-3787.	2.8	15
77	Reversible ion exchange and structural stability of garnet-type Nb-doped Li7La3Zr2O12 in water for applications in lithium batteries. Journal of Power Sources, 2015, 282, 286-293.	7.8	104
78	Open mesoporous spherical shell structured Co3O4with highly efficient catalytic performance in Li–O2batteries. Journal of Materials Chemistry A, 2015, 3, 7600-7606.	10.3	36
79	Wave-like free-standing NiCo2O4 cathode for lithium–oxygen battery with high discharge capacity. Journal of Power Sources, 2015, 294, 593-601.	7.8	37
80	Oneâ€5tep Solvothermal Synthesis of Nanostructured Manganese Fluoride as an Anode for Rechargeable Lithiumâ€Ion Batteries and Insights into the Conversion Mechanism. Advanced Energy Materials, 2015, 5, 1401716.	19.5	97
81	Graphene nanosheets loaded with Pt nanoparticles with enhanced electrochemical performance for sodium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 2568-2571.	10.3	76
82	Enhanced performance of lithium sulfur battery with polypyrrole warped mesoporous carbon/sulfur composite. Journal of Power Sources, 2014, 254, 353-359.	7.8	140
83	Mesoporous carbon/sulfur composite with polyaniline coating for lithium sulfur batteries. Solid State Ionics, 2014, 262, 170-173.	2.7	35
84	Hierarchical mesoporous iron-based fluoride with partially hollow structure: facile preparation and high performance as cathode material for rechargeable lithium ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 8556.	2.8	42
85	Size-controlled synthesis of hierarchical nanoporous iron based fluorides and their high performances in rechargeable lithium ion batteries. Chemical Communications, 2014, 50, 6487.	4.1	32
86	Worm-like mesoporous structured iron-based fluoride: Facile preparation and application as cathodes for rechargeable lithium ion batteries. Journal of Power Sources, 2013, 244, 306-311.	7.8	17
87	Carbon coated Li4Ti5O12 nanorods as superior anode material for high rate lithium ion batteries. Journal of Alloys and Compounds, 2013, 572, 37-42.	5.5	77