Joseph J Topczewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7143643/publications.pdf

Version: 2024-02-01

430874 454955 45 991 18 30 citations g-index h-index papers 45 45 45 963 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Iridium-Catalyzed Allylic Fluorination of Trichloroacetimidates. Journal of the American Chemical Society, 2011, 133, 19318-19321.	13.7	132
2	Iridium-Catalyzed Enantioselective Fluorination of Racemic, Secondary Allylic Trichloroacetimidates. Journal of the American Chemical Society, 2015, 137, 11912-11915.	13.7	83
3	Enantioselective Copper Catalyzed Alkyne–Azide Cycloaddition by Dynamic Kinetic Resolution. Journal of the American Chemical Society, 2019, 141, 5135-5138.	13.7	64
4	Molecular Basis for the N-Terminal Bromodomain-and-Extra-Terminal-Family Selectivity of a Dual Kinase–Bromodomain Inhibitor. Journal of Medicinal Chemistry, 2018, 61, 9316-9334.	6.4	56
5	Allylic azides: synthesis, reactivity, and the Winstein rearrangement. Organic and Biomolecular Chemistry, 2019, 17, 4406-4429.	2.8	50
6	Stereoselective Dynamic Cyclization of Allylic Azides: Synthesis of Tetralins, Chromanes, and Tetrahydroquinolines. Journal of the American Chemical Society, 2018, 140, 1211-1214.	13.7	46
7	NMR Spectra through the Eyes of a Student: Eye Tracking Applied to NMR Items. Journal of Chemical Education, 2017, 94, 29-37.	2.3	43
8	A Tandem Cascade Cyclizationâ [°] Electrophilic Aromatic Substitution: Application in the Total Synthesis of (+)-Angelichalcone. Journal of the American Chemical Society, 2009, 131, 14630-14631.	13.7	38
9	Exploration of Cascade Cyclizations Terminated by Tandem Aromatic Substitution: Total Synthesis of (+)-Schweinfurthin A. Journal of Organic Chemistry, 2011, 76, 909-919.	3.2	38
10	Dynamic Kinetic Resolution of Allylic Azides via Asymmetric Dihydroxylation. Journal of the American Chemical Society, 2017, 139, 7737-7740.	13.7	36
11	Gold Catalyzed Decarboxylative Cross-Coupling of Iodoarenes. Journal of the American Chemical Society, 2020, 142, 13210-13218.	13.7	30
12	Kinetic Resolution of Cyclic Secondary Azides, Using an Enantioselective Copper-Catalyzed Azide–Alkyne Cycloaddition. Organic Letters, 2019, 21, 4355-4358.	4.6	27
13	Enantioselective Nickel-Catalyzed Alkyne–Azide Cycloaddition by Dynamic Kinetic Resolution. Journal of the American Chemical Society, 2021, 143, 5308-5313.	13.7	27
14	Evidence for a Sigmatropic and an Ionic Pathway in the Winstein Rearrangement. Journal of Organic Chemistry, 2018, 83, 8214-8224.	3.2	22
15	Systematically Mitigating the p38α Activity of Triazole-based BET Inhibitors. ACS Medicinal Chemistry Letters, 2019, 10, 1296-1301.	2.8	22
16	4-Methyl-1,2,3-Triazoles as <i>N</i> -Acetyl-Lysine Mimics Afford Potent BET Bromodomain Inhibitors with Improved Selectivity. Journal of Medicinal Chemistry, 2021, 64, 10497-10511.	6.4	22
17	Regiocontrolled Wacker Oxidation of Cinnamyl Azides. Organic Letters, 2018, 20, 1604-1607.	4.6	21
18	First total synthesis of (+)-vedelianin, a potent antiproliferative agent. Tetrahedron Letters, 2011, 52, 1628-1630.	1.4	20

#	Article	IF	CITATIONS
19	Mechanistic Investigation into the Gold-Catalyzed Decarboxylative Cross-Coupling of Iodoarenes. ACS Catalysis, 2021, 11, 9578-9587.	11.2	18
20	Kinetic Assessment of <i>N</i> -Methyl-2-methoxypyridinium Species as Phosphonate Anion Methylating Agents. Organic Letters, 2013, 15, 1084-1087.	4.6	17
21	Direct Conversion of Aldehydes and Ketones into Azides by Sequential Nucleophilic Addition and Substitution. European Journal of Organic Chemistry, 2016, 2016, 4805-4809.	2.4	17
22	Additive-Free Palladium-Catalyzed Decarboxylative Cross-Coupling of Aryl Chlorides. Organic Letters, 2019, 21, 4734-4738.	4.6	16
23	Fluorescent schweinfurthin B and F analogs with anti-proliferative activity. Bioorganic and Medicinal Chemistry, 2010, 18, 6734-6741.	3.0	13
24	3-Amino-chromanes and Tetrahydroquinolines as Selective 5-HT $<$ sub $>2Bsub>, 5-HT<sub>7sub>, or \ddot{l}f<sub>1sub> Receptor Ligands. ACS Medicinal Chemistry Letters, 2019, 10, 1436-1442.$	2.8	13
25	Aryl-Decarboxylation Reactions Catalyzed by Palladium: Scope and Mechanism. Synthesis, 2020, 52, 365-377.	2.3	12
26	The Effect of Proximal Functionality on the Allylic Azide Equilibrium. European Journal of Organic Chemistry, 2017, 2017, 6365-6368.	2.4	11
27	Catalytic Racemization of Activated Organic Azides. Organic Letters, 2018, 20, 7253-7256.	4.6	11
28	On the Winstein rearrangement: equilibrium and mechanism. Arkivoc, 2020, 2019, 1-17.	0.5	11
29	Ti-catalyzed ring-opening oxidative amination of methylenecyclopropanes with diazenes. Chemical Science, 2020, 11, 7204-7209.	7.4	11
30	Relevance of the C-5 position to schweinfurthin induced cytotoxicity. Bioorganic and Medicinal Chemistry, 2011, 19, 7570-7581.	3.0	9
31	Palladium-catalyzed salt-free double decarboxylative aryl allylation. Organic and Biomolecular Chemistry, 2019, 17, 1709-1713.	2.8	7
32	Divergent Mechanisms of the Banert Cascade with Propargyl Azides. Journal of Organic Chemistry, 2020, 85, 3174-3181.	3.2	7
33	"It's a (Kinetic) Trap!" – Selectively Differentiating Allylic Azide Isomers. Synlett, 2018, 29, 1537-1542.	1.8	6
34	A Cascade Reaction of Cinnamyl Azides with Acrylates Directly Generates Tetrahydro-Pyrrolo-Pyrazole Heterocycles. Journal of Organic Chemistry, 2020, 85, 6044-6059.	3.2	6
35	Reversible inhibition of human acetylcholinesterase by methoxypyridinium species. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5786-5789.	2.2	5
36	Development of quantitative structure activity relationships for the binding affinity of methoxypyridinium cations for human acetylcholinesterase. Journal of Molecular Graphics and Modelling, 2015, 62, 181-189.	2.4	5

#	Article	IF	CITATIONS
37	Combined Experimental and Computational Mechanistic Investigation of the Palladium-Catalyzed Decarboxylative Cross-Coupling of Sodium Benzoates with Chloroarenes. Journal of Organic Chemistry, 2021, 86, 11419-11433.	3.2	5
38	Double-click enables synthesis of chemical libraries for drug discovery. Nature, 2019, 574, 42-43.	27.8	4
39	Intercepting the Banert cascade with nucleophilic fluorine: direct access to \hat{l} ±-fluorinated <i>N</i> H-1,2,3-triazoles. Chemical Communications, 2021, 57, 5024-5027.	4.1	3
40	Silver Mediated Banert Cascade with Carbon Nucleophiles. Organic Letters, 2021, 23, 3227-3230.	4.6	3
41	Electrophilic aromatic prenylation via cascade cyclization. Tetrahedron, 2013, 69, 9212-9218.	1.9	2
42	A cascade reaction of cinnamyl azides with vinyl sulfones directly generates dihydro-pyrrolo-pyrazole heterocycles. Tetrahedron Letters, 2021, 67, 152860.	1.4	2
43	Front Cover: The Effect of Proximal Functionality on the Allylic Azide Equilibrium (Eur. J. Org. Chem.) Tj ETQq1 1 ().784314 2.4	rgBT /Overlo
44	Gram-Scale Synthesis of 2,5-Difluoro-7,7,8,8-tetracyanoquinodimethane (F2-TCNQ). Journal of Organic Chemistry, 2020, 85, 4560-4564.	3.2	0
45	Enhanced Affinity for 3-Amino-Chromane-Derived Ïf 1 Receptor Ligands. ACS Omega, 2020, 5, 32724-32737.	3.5	O