Jiang Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7143639/publications.pdf

Version: 2024-02-01

31	807	17	29
papers	citations	h-index	g-index
32	32	32	1389
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Highâ€Performance Pentaceneâ€Based Fieldâ€Effect Transistor Memory Using the Electrets of Polymer Blends. Advanced Electronic Materials, 2022, 8, .	5.1	10
2	Enhancement of Memory Properties of Pentacene Field-Effect Transistor by the Reconstruction of an Inner Vertical Electric Field with an n-Type Semiconductor Interlayer. ACS Applied Materials & Samp; Interfaces, 2021, 13, 13452-13458.	8.0	12
3	Enhanced Performance of Organic Fieldâ€Effect Transistor Memory by Holeâ€Barrier Modulation with an Nâ€Type Organic Buffer Layer between Pentacene and Polymer Electret. Advanced Electronic Materials, 2020, 6, 1901184.	5.1	14
4	The magnetism of 1T-MX $<$ sub $>$ 2 $<$ /sub $>$ (M = Zr, Hf; X = S, Se) monolayers by hole doping. RSC Advances, 2019, 9, 13561-13566.	3.6	16
5	Piezoelectricity in two-dimensional covalent organic frameworks. Journal of Applied Physics, 2017, 121, 225112.	2.5	О
6	Encoding, training and retrieval in ferroelectric tunnel junctions. Scientific Reports, 2016, 6, 27022.	3.3	8
7	Strain tunable magnetism in SnX2 (X = S, Se) monolayers by hole doping. Scientific Reports, 2016, 6, 39218.	3.3	36
8	Quantum spin Hall insulator phase in monolayer WTe2 by uniaxial strain. AIP Advances, 2016, 6, .	1.3	31
9	Tunable electronic structures in MPX $<$ sub $>3sub> (M = Zn, Cd; X = S, Se) monolayers by strain engineering. RSC Advances, 2016, 6, 89901-89906.$	3.6	19
10	Synthesis of Pbl ₂ nanowires for high sensitivity photodetectors. RSC Advances, 2016, 6, 59445-59449.	3.6	20
11	Carrier-tunable magnetism in two dimensional graphene-like C ₂ N. RSC Advances, 2016, 6, 54027-54031.	3.6	28
12	Unexpected Magnetic Semiconductor Behavior in Zigzag Phosphorene Nanoribbons Driven by Half-Filled One Dimensional Band. Scientific Reports, 2015, 5, 8921.	3.3	88
13	The development of BiFeO3-based ceramics. Science Bulletin, 2014, 59, 5161-5169.	1.7	40
14	Continuously-tuned tunneling behaviors of ferroelectric tunnel junctions based on BaTiO3/La0.67Sr0.33MnO3 heterostructure. AIP Advances, 2014, 4, .	1.3	7
15	Enhanced half-metallicity in the zigzag graphene nanoribbons by adsorption of the zigzag hydrogen fluoride molecular chains. AIP Advances, 2014, 4, 067132.	1.3	0
16	Enhanced leakage current properties of HfO2/GaN gate dielectric stack by introducing an ultrathin buffer layer. Journal of Materials Science: Materials in Electronics, 2014, 25, 152-156.	2.2	3
17	Memristive learning and memory functions in polyvinyl alcohol polymer memristors. AIP Advances, 2014, 4, .	1.3	20
18	The roles of the dielectric constant and the relative level of conduction band of high-k composite with Si in improving the memory performance of charge-trapping memory devices. AIP Advances, 2014, 4, 117110.	1.3	4

#	Article	IF	CITATIONS
19	Structural Evolving Sequence and Porous <scp><scp>Ba</scp><scp><scp>Nb</scp></scp> Ferroelectric Ceramics with Ultrahigh Breakdown Field and Zero Strain. Journal of the American Ceramic Society, 2013, 96, 555-560.</scp>	_{8<td>ub><scp><</scp></td>}	ub> <scp><</scp>
20	Crystallization, phase evolution and ferroelectric properties of sol–gel-synthesized Ba(Ti _{0.8} Zr _{0.2})O ₃ –x(Ba _{0.7} Ca _{0.3})TiO _{3< films. Journal of Materials Chemistry C, 2013, 1, 522-530.}	/ รมb >thin	97
21	Upward ferroelectric self-polarization induced by compressive epitaxial strain in (001) BaTiO3 films. Journal of Applied Physics, 2013, 113, .	2.5	48
22	The interface inter-diffusion induced enhancement of the charge-trapping capability in HfO2/Al2O3 multilayered memory devices. Applied Physics Letters, $2013,103,.$	3.3	44
23	The effect of thermal treatment induced inter-diffusion at the interfaces on the charge trapping performance of HfO2/Al2O3 nanolaminate-based memory devices. Journal of Applied Physics, 2013, 114, .	2.5	54
24	Electronâ€beam induced phase transformation in βâ€Ag ₂ Se thin films. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 135-138.	1.8	6
25	Enhanced memory performance by tailoring the microstructural evolution of (ZrO2)0.6(SiO2)0.4 charge trapping layer in the nanocrystallites-based charge trap flash memory cells. Applied Physics A: Materials Science and Processing, 2012, 108, 217-222.	2.3	15
26	Redox-controlled memristive switching in the junctions employing Ti reactive electrodes. AIP Advances, 2011, 1, 032141.	1.3	3
27	Preparation and characterization of GeTe4 thin films as a candidate for phase change memory applications. Journal of Applied Physics, 2011, 109, .	2.5	13
28	Memristive behaviors of LiNbO3 ferroelectric diodes. Applied Physics Letters, 2010, 97, 012902.	3.3	40
29	A TiAl2O5 nanocrystal charge trap memory device. Applied Physics Letters, 2010, 97, 143504.	3.3	37
30	Ga 2 Te 3 phase change material for low-power phase change memory application. Applied Physics Letters, 2010, 97, .	3.3	39
31	Conduction behavior change responsible for the resistive switching as investigated by complex impedance spectroscopy. Applied Physics Letters, 2007, 91, .	3.3	38