
Zhao-Qiang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7143634/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel Y-shaped photoiniferter used for the construction of polydimethylsiloxane surfaces with antibacterial and antifouling properties. Journal of Materials Chemistry B, 2022, 10, 262-270.	5.8	8
2	Oxygenâ€Demanding Photocontrolled RAFT Polymerization Under Ambient Conditions. Macromolecular Rapid Communications, 2022, 43, e2100920.	3.9	11
3	Preparation of <i>α</i> , <i>ω</i> â€heterobifunctionalized poly(<i>N</i> â€vinylpyrrolidone) via a bisâ€clickable <scp>RAFT</scp> reagent. Journal of Polymer Science, 2022, 60, 1954-1961.	3.8	2
4	Transparent and superhydrophilic antifogging coatings constructed by poly(N-hydroxyethyl) Tj ETQq0 0 0 rgBT /O 128724.	verlock 10 4.7) Tf 50 627 12
5	Introducing SuFEx click chemistry into aliphatic polycarbonates: a novel toolbox/platform for post-modification as biomaterials. Journal of Materials Chemistry B, 2022, 10, 5203-5210.	5.8	2
6	Synthesis and antifouling performance of tadpole-shaped poly(<i>N</i> -hydroxyethylacrylamide) coatings. Journal of Materials Chemistry B, 2021, 9, 2877-2884.	5.8	9
7	Reactive films fabricated using click sulfur(<scp>vi</scp>)–fluoride exchange reactions <i>via</i> layer-by-layer assembly. Journal of Materials Chemistry B, 2020, 8, 5529-5534.	5.8	10
8	Tri-functional platform for the facile construction of dual-functional surfaces <i>via</i> a one-pot strategy. Journal of Materials Chemistry B, 2020, 8, 5602-5605.	5.8	4
9	Chemical Surface Modification of Polymeric Biomaterials for Biomedical Applications. Macromolecular Rapid Communications, 2020, 41, e1900430.	3.9	86
10	Efficient Heterodifunctional Unimolecular Ringâ€Closure Method for Cyclic Polymers by Combining RAFT and SuFEx Click Reactions. Macromolecular Rapid Communications, 2019, 40, 1900310.	3.9	16
11	Enhancement of Bactericidal Activity via Cyclic Poly(cationic liquid) Brushes. Macromolecular Rapid Communications, 2019, 40, e1900379.	3.9	12
12	A rapid one-step surface functionalization of polyvinyl chloride by combining click sulfur(<scp>vi</scp>)-fluoride exchange with benzophenone photochemistry. Chemical Communications, 2019, 55, 858-861.	4.1	28
13	Design, Synthesis, and Application of a Difunctional Y-Shaped Surface-Tethered Photoinitiator. Langmuir, 2019, 35, 3470-3478.	3.5	9
14	Protein-resistant properties of poly(N-vinylpyrrolidone)-modified gold surfaces: The advantage of bottle-brushes over linear brushes. Colloids and Surfaces B: Biointerfaces, 2019, 177, 448-453.	5.0	25
15	Combining Click Sulfur(VI)â€Fluoride Exchange with Photoiniferters: A Facile, Fast, and Efficient Strategy for Postpolymerization Modification. Macromolecular Rapid Communications, 2018, 39, 1700523.	3.9	17
16	Facile fabrication of a "Catch and Release―cellulose acetate nanofiber interface: a platform for reversible glycoprotein capture and bacterial attachment. Journal of Materials Chemistry B, 2018, 6, 6744-6751.	5.8	13
17	"Click-chemical―modification of cellulose acetate nanofibers: a versatile platform for biofunctionalization. Journal of Materials Chemistry B, 2018, 6, 4579-4582.	5.8	17
18	A hemocompatible polyurethane surface having dual fibrinolytic and nitric oxide generating functions. Journal of Materials Chemistry B, 2017, 5, 980-987.	5.8	16

ZHAO-QIANG WU

#	Article	IF	CITATIONS
19	Smart Antibacterial Surfaces Established by Oneâ€&tep Photo rosslinking. Advanced Materials Interfaces, 2017, 4, 1700953.	3.7	18
20	Marrying mussel inspired chemistry with photoiniferters: a novel strategy for surface functionalization. Polymer Chemistry, 2016, 7, 5563-5570.	3.9	19
21	Antibacterial surfaces based on poly(cationic liquid) brushes: switchability between killing and releasing via anion counterion switching. Journal of Materials Chemistry B, 2016, 4, 6111-6116.	5.8	30
22	Substrate-independent, Schiff base interactions to fabricate lysine-functionalized surfaces with fibrinolytic activity. Journal of Materials Chemistry B, 2016, 4, 1458-1465.	5.8	13
23	Reversible Bacterial Adhesion on Mixed Poly(dimethylaminoethyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50	58 <u>2 I</u> d (n	nethacrylate) 24
24	Dual-function antibacterial surfaces for biomedical applications. Acta Biomaterialia, 2015, 16, 1-13.	8.3	354
25	A facile approach to modify poly(dimethylsiloxane) surfaces via visible light-induced grafting polymerization. Journal of Materials Chemistry B, 2015, 3, 629-634.	5.8	28
26	Incorporation of Lysineâ€Containing Copolymer with Polyurethane Affording Biomaterial with Specific Adsorption of Plasminogen. Chinese Journal of Chemistry, 2014, 32, 44-50.	4.9	5
27	One-step preparation of vinyl-functionalized material surfaces: a versatile platform for surface modification. Science China Chemistry, 2014, 57, 654-660.	8.2	13
28	Controlling the biointerface of electrospun mats for clot lysis: an engineered tissue plasminogen activator link to a lysine-functionalized surface. Journal of Materials Chemistry B, 2014, 2, 4272.	5.8	10
29	A Versatile, Fast, and Efficient Method of Visible-Light-Induced Surface Grafting Polymerization. Langmuir, 2014, 30, 5474-5480.	3.5	26
30	Poly(<i>N</i> â€vinylpyrrolidone)â€Modified Surfaces for Biomedical Applications. Macromolecular Bioscience, 2013, 13, 147-154.	4.1	170
31	A novel antithrombotic coronary stent: lysine-poly(HEMA)-modified cobalt–chromium stent with fibrinolytic activity. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 684-695.	3.5	10
32	A polymer-based turn-on fluorescent sensor for specific detection of hydrogen sulfide. RSC Advances, 2013, 3, 14543.	3.6	20
33	Poly(N-vinylpyrrolidone)-grafted poly(dimethylsiloxane) surfaces with tunable microtopography and anti-biofouling properties. RSC Advances, 2013, 3, 4716.	3.6	30
34	Regulation of fibrinolytic protein adsorption on polyurethane surfaces by modification with lysine-containing copolymers. Polymer Chemistry, 2013, 4, 5597.	3.9	31
35	Vinyl-monomer with lysine side chains for preparing copolymer surfaces with fibrinolytic activity. Polymer Chemistry, 2013, 4, 1583-1589.	3.9	20
36	Protein adsorption and cell adhesion on RGD-functionalized silicon substrate surfaces. Chinese Journal of Polymer Science (English Edition), 2013, 31, 495-502.	3.8	15

ZHAO-QIANG WU

#	Article	IF	CITATIONS
37	AGET ATRP of methyl methacrylatevia a bimetallic catalyst. RSC Advances, 2012, 2, 840-847.	3.6	17
38	Enhancing Specific Binding of L929 Fibroblasts: Effects of Multiâ€Scale Topography of GRGDY Peptide Modified Surfaces. Macromolecular Bioscience, 2012, 12, 1391-1400.	4.1	21
39	Facile Synthesis of Thermally Stable Poly(<i>N</i> -vinylpyrrolidone)-Modified Gold Surfaces by Surface-Initiated Atom Transfer Radical Polymerization. Langmuir, 2012, 28, 9451-9459.	3.5	47
40	Poly(N-vinylpyrrolidone)-modified poly(dimethylsiloxane) elastomers as anti-biofouling materials. Colloids and Surfaces B: Biointerfaces, 2012, 96, 37-43.	5.0	59
41	Proteinâ€Resistant and Fibrinolytic Polyurethane Surfaces. Macromolecular Bioscience, 2012, 12, 126-131.	4.1	20
42	Poly(N-vinylpyrrolidone)-modified surfaces repel plasma protein adsorption. Chinese Journal of Polymer Science (English Edition), 2012, 30, 235-241.	3.8	13
43	Step-wise control of protein adsorption and bacterial attachment on a nanowire array surface: tuning surface wettability by salt concentration. Journal of Materials Chemistry, 2011, 21, 13920.	6.7	48
44	"Nano-catalyst―for DNA transformation. Journal of Materials Chemistry, 2011, 21, 6148.	6.7	19
45	Lysine–poly(2-hydroxyethyl methacrylate) modified polyurethane surface with high lysine density and fibrinolytic activity. Acta Biomaterialia, 2011, 7, 954-958.	8.3	54
46	Tissue plasminogen activator-containing polyurethane surfaces for fibrinolytic activity. Acta Biomaterialia, 2011, 7, 1993-1998.	8.3	25
47	REGULATION OF PROTEIN ADSORPTION ON pH-RESPONSIVE SURFACES. Acta Polymerica Sinica, 2011, 011, 812-816.	0.0	3
48	Poly(vinylpyrrolidone-b-styrene) block copolymers tethered surfaces for protein adsorption and cell adhesion regulation. Colloids and Surfaces B: Biointerfaces, 2010, 79, 452-459.	5.0	28
49	Protein adsorption on poly(N-isopropylacrylamide)-modified silicon surfaces: Effects of grafted layer thickness and protein size. Colloids and Surfaces B: Biointerfaces, 2010, 76, 468-474.	5.0	91
50	A surface decorated with diblock copolymer for biomolecular conjugation. Soft Matter, 2010, 6, 2616.	2.7	28
51	Protein Adsorption and Cell Adhesion/Detachment Behavior on Dual-Responsive Silicon Surfaces Modified with Poly(<i>N</i> -isopropylacrylamide)- <i>block</i> -polystyrene Copolymer. Langmuir, 2010, 26, 8582-8588.	3.5	108
52	A Facile Approach to Modify Polyurethane Surfaces for Biomaterial Applications. Macromolecular Bioscience, 2009, 9, 1165-1168.	4.1	51
53	Protein Adsorption on Poly(<i>N</i> -vinylpyrrolidone)-Modified Silicon Surfaces Prepared by Surface-Initiated Atom Transfer Radical Polymerization. Langmuir, 2009, 25, 2900-2906.	3.5	135
54	Novel water-soluble fluorescent polymer containing recognition units: Synthesis and interactions with PC12 cell. European Polymer Journal, 2005, 41, 1985-1992.	5.4	16

#	ARTICLE	IF	CITATIONS
55	Preparing Wellâ€Defined Polyacrylamide― <i>b</i> â€Polycarbonate by Integrating Photoiniferter Polymerization and TBDâ€Catalyzed ROP. Macromolecular Rapid Communications, 0, , 2200376.	3.9	0