Mu-Wang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/714337/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biomimetic Asymmetric Hydrogenation: In Situ Regenerable Hantzsch Esters for Asymmetric Hydrogenation of Benzoxazinones. Journal of the American Chemical Society, 2011, 133, 16432-16435.	6.6	175
2	Homogenous Pd-Catalyzed Asymmetric Hydrogenation of Unprotected Indoles: Scope and Mechanistic Studies. Journal of the American Chemical Society, 2014, 136, 7688-7700.	6.6	169
3	Dehydration triggered asymmetric hydrogenation of 3-(α-hydroxyalkyl)indoles. Chemical Science, 2011, 2, 803.	3.7	157
4	Iridium atalyzed Asymmetric Hydrogenation of Pyridinium Salts. Angewandte Chemie - International Edition, 2012, 51, 10181-10184.	7.2	135
5	Enantioselective Iridiumâ€Catalyzed Hydrogenation of 1―and 3â€Substituted Isoquinolinium Salts. Angewandte Chemie - International Edition, 2013, 52, 3685-3689.	7.2	123
6	Enantioselective Palladiumâ€Catalyzed CH Functionalization of Indoles Using an Axially Chiral 2,2′â€Bipyridine Ligand. Angewandte Chemie - International Edition, 2015, 54, 11956-11960.	7.2	113
7	Kinetic Resolution of Axially Chiral 5- or 8-Substituted Quinolines via Asymmetric Transfer Hydrogenation. Journal of the American Chemical Society, 2016, 138, 10413-10416.	6.6	112
8	A mild method for generation of o-quinone methides under basic conditions. The facile synthesis of trans-2,3-dihydrobenzofurans. Chemical Communications, 2013, 49, 1660.	2.2	107
9	Enantioselective Pd-Catalyzed Hydrogenation of Fluorinated Imines: Facile Access to Chiral Fluorinated Amines. Organic Letters, 2010, 12, 5075-5077.	2.4	94
10	An Enantioselective Approach to 2,3â€Disubstituted Indolines through Consecutive BrÃ,nsted Acid/Pdâ€Complexâ€Promoted Tandem Reactions. Chemistry - A European Journal, 2011, 17, 7193-7197.	1.7	90
11	Asymmetric hydrogenolysis of racemic tertiary alcohols, 3-substituted 3-hydroxyisoindolin-1-ones. Chemical Communications, 2012, 48, 1698-1700.	2.2	90
12	Concise Redox Deracemization of Secondary and Tertiary Amines with a Tetrahydroisoquinoline Core via a Nonenzymatic Process. Journal of the American Chemical Society, 2015, 137, 10496-10499.	6.6	89
13	C–H Oxidation/Michael Addition/Cyclization Cascade for Enantioselective Synthesis of Functionalized 2-Amino-4 <i>H</i> -chromenes. Organic Letters, 2015, 17, 6134-6137.	2.4	81
14	4,5-Dihydropyrrolo[1,2- <i>a</i>]quinoxalines: A Tunable and Regenerable Biomimetic Hydrogen Source. Organic Letters, 2014, 16, 1406-1409.	2.4	63
15	Synthesis of Chiral Fluorinated Propargylamines via Chemoselective Biomimetic Hydrogenation. Organic Letters, 2016, 18, 4650-4653.	2.4	62
16	Enantioselective Synthesis of α-Amino Phosphonates via Pd-Catalyzed Asymmetric Hydrogenation. Organic Letters, 2016, 18, 692-695.	2.4	59
17	Asymmetric Hydrogenation of Isoquinolines and Pyridines Using Hydrogen Halide Generated in Situ as Activator. Organic Letters, 2017, 19, 4988-4991.	2.4	59
18	A Streamlined Synthesis of 2,3â€Dihydrobenzofurans <i>via</i> the <i>ortho</i> â€Quinone Methides Generated from 2â€Alkylâ€Substituted Phenols, Advanced Synthesis and Catalysis, 2014, 356, 383-387	2.1	52

Mu-Wang Chen

#	Article	IF	CITATIONS
19	Facile construction of three contiguous stereogenic centers via dynamic kinetic resolution in asymmetric transfer hydrogenation of quinolines. Chemical Communications, 2014, 50, 12526-12529.	2.2	52
20	Catalytic Biomimetic Asymmetric Reduction of Alkenes and Imines Enabled by Chiral and Regenerable NAD(P)H Models. Angewandte Chemie - International Edition, 2019, 58, 1813-1817.	7.2	51
21	Catalytic Asymmetric Synthesis of Isoindolinones. Chemistry - an Asian Journal, 2019, 14, 1306-1322.	1.7	45
22	Synthesis of chiral sultams via palladium-catalyzed intramolecular asymmetric reductive amination. Chemical Communications, 2017, 53, 1704-1707.	2.2	44
23	Facile Synthesis of Chiral Cyclic Ureas through Hydrogenation of 2â€Hydroxypyrimidine/Pyrimidinâ€2(1 <i>H</i>)â€one Tautomers. Angewandte Chemie - International Edition, 2018, 57, 5853-5857.	7.2	43
24	Enantioselective Pd-catalyzed hydrogenation of tetrasubstituted olefins of cyclic β-(arylsulfonamido)acrylates. Tetrahedron Letters, 2012, 53, 2560-2563.	0.7	42
25	An efficient route to chiral N-heterocycles bearing a C–F stereogenic center via asymmetric hydrogenation of fluorinated isoquinolines. Chemical Communications, 2013, 49, 8537.	2.2	41
26	Pd-catalyzed asymmetric hydrogenation of fluorinated aromatic pyrazol-5-ols via capture of active tautomers. Chemical Science, 2015, 6, 3415-3419.	3.7	41
27	Enantioselective synthesis of trifluoromethyl substituted piperidines with multiple stereogenic centers via hydrogenation of pyridinium hydrochlorides. Organic Chemistry Frontiers, 2015, 2, 586-589.	2.3	38
28	Synthesis of Chiral Fluorinated Hydrazines via Pd-Catalyzed Asymmetric Hydrogenation. Organic Letters, 2016, 18, 2676-2679.	2.4	36
29	Formal Palladium-Catalyzed Asymmetric Hydrogenolysis of Racemic <i>N</i> -Sulfonyloxaziridines. Organic Letters, 2015, 17, 190-193.	2.4	32
30	Asymmetric Hydrogenation via Capture of Active Intermediates Generated from Aza-Pinacol Rearrangement. Journal of the American Chemical Society, 2014, 136, 15837-15840.	6.6	30
31	Iridium-Catalyzed Selective Hydrogenation of 3-Hydroxypyridinium Salts: A Facile Synthesis of Piperidin-3-ones. Organic Letters, 2015, 17, 1640-1643.	2.4	29
32	Iridium-Catalyzed Asymmetric Hydrogenation of 4,6-Disubstituted 2-Hydroxypyrimidines. Organic Letters, 2018, 20, 6415-6419.	2.4	28
33	Organocatalytic Asymmetric Reduction of Fluorinated Alkynyl Ketimines. Journal of Organic Chemistry, 2018, 83, 8688-8694.	1.7	28
34	Iridium-catalyzed asymmetric hydrogenation of cyclic iminium salts. Organic Chemistry Frontiers, 2017, 4, 1125-1129.	2.3	24
35	Biomimetic asymmetric reduction of benzoxazinones and quinoxalinones using ureas as transfer catalysts. Chemical Communications, 2020, 56, 7309-7312.	2.2	22
36	Enantioselective synthesis of trifluoromethylated dihydroquinoxalinones <i>via</i> palladium-catalyzed hydrogenation. Organic Chemistry Frontiers, 2019, 6, 746-750.	2.3	20

Mu-Wang Chen

#	Article	IF	CITATIONS
37	Chiral Phosphoric Acid-Catalyzed Pictet–Spengler Reactions for Synthesis of 5′,11′-Dihydrospiro[indoline-3,6′-indolo[3,2- <i>c</i>]qui-nolin]-2-ones Containing Quaternary Stereocenters. Journal of Organic Chemistry, 2021, 86, 6897-6906.	1.7	20
38	Synthesis of chiral sultams with two adjacent stereocenters <i>via</i> palladium-catalyzed dynamic kinetic resolution. Organic Chemistry Frontiers, 2018, 5, 1113-1117.	2.3	17
39	A Concise Synthesis of 2â€(2â€Hydroxyphenyl)acetonitriles <i>via</i> the <i>o</i> â€Quinone Methides Generated from 2â€(1â€Tosylalkyl)phenols. Chinese Journal of Chemistry, 2014, 32, 981-984.	2.6	15
40	Construction of Multiple-Substituted Chiral Cyclohexanes through Hydrogenative Desymmetrization of 2,2,5-Trisubstituted 1,3-Cyclohexanediones. Organic Letters, 2019, 21, 9401-9404.	2.4	15
41	Chiral Phosphoric Acid-Catalyzed Synthesis of Fluorinated 5,6-Dihydroindolo[1,2- <i>c</i>]quinazolines with Quaternary Stereocenters. Journal of Organic Chemistry, 2019, 84, 8300-8308.	1.7	14
42	Enantioselective Synthesis of Endocyclic β-Amino Acids with Two Contiguous Stereocenters via Hydrogenation of 3-Alkoxycarbonyl-2-Substituted Quinolines. Synthesis, 2013, 45, 3239-3244.	1.2	13
43	Palladium-catalyzed asymmetric hydrogenation of 2-aryl cyclic ketones for the synthesis of <i>trans</i> cycloalkanols through dynamic kinetic resolution under acidic conditions. Chemical Communications, 2020, 56, 5815-5818.	2.2	12
44	α-Keto Acids as Triggers and Partners for the Synthesis of Quinazolinones, Quinoxalinones, Benzooxazinones, and Benzothiazoles in Water. Journal of Organic Chemistry, 2021, 86, 14866-14882.	1.7	12
45	Enantioselective Synthesis of 2-Functionalized Tetrahydroquinolines through Biomimetic Reduction. Organic Letters, 2021, 23, 9112-9117.	2.4	12
46	C2-Symmetric Hindered "Sandwich―Chiral N-Heterocyclic Carbene Precursors and Their Transition Metal Complexes: Expedient Syntheses, Structural Authentication, and Catalytic Properties. Organometallics, 2018, 37, 3756-3769.	1.1	11
47	Highly selective partial dehydrogenation of tetrahydroisoquinolines using modified Pd/C. Chinese Journal of Catalysis, 2015, 36, 33-39.	6.9	10
48	Synthesis of Chiral β-Fluoroalkyl β-Amino Acid Derivatives via Palladium-Catalyzed Hydrogenation. Journal of Organic Chemistry, 2019, 84, 10371-10379.	1.7	10
49	Enantioselective Synthesis of Tetrahydroquinolines <i>via</i> <scp>Oneâ€Pot</scp> Cascade Biomimetic Reduction ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1691-1695.	2.6	10
50	Catalytic Biomimetic Asymmetric Reduction of Alkenes and Imines Enabled by Chiral and Regenerable NAD(P)H Models. Angewandte Chemie, 2019, 131, 1827-1831.	1.6	7
51	Facile Synthesis of Chiral Cyclic Ureas through Hydrogenation of 2â€Hydroxypyrimidine/Pyrimidinâ€2(1 <i>H</i>)â€one Tautomers. Angewandte Chemie, 2018, 130, 5955-5959.	1.6	5
52	Chiral phosphoric acid-catalyzed regioselective synthesis of spiro aminals with quaternary stereocenters. Tetrahedron Letters, 2021, 65, 152793.	0.7	5
53	Synthesis of chiral quaternary fluorinated cyclic sulfamidates via palladium-catalyzed arylation with arylboronic acids. Tetrahedron Letters, 2019, 60, 151280.	0.7	3